Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Basic Sciences

Characterization of a New Drug-resistant Human Myeloma Cell Line That Expresses P-Glycoprotein

William S. Dalton, Brian G. M. Durie, David S. Alberts, James H. Gerlach and Anne E. Cress
William S. Dalton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian G. M. Durie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David S. Alberts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James H. Gerlach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne E. Cress
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 1986
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Multiple myeloma is a disease with a high initial chemotherapeutic response but virtually no cures due to emergence of drug resistance. A doxorubicin-resistant human myeloma cell line (8226/Dox) has been selected from the myeloma cell line RPMI8226 by continuously exposing cells to gradually increasing doses of doxorubicin. The resistant phenotype has been retained for over 2 months despite growth in drug-free medium. The resistant subline was cross-resistant to mitoxantrone, acronycine, etoposide, and vincristine. The 8226/Dox cell line remained sensitive to melphalan but acquired collateral sensitivity to dexamethasone. Intracellular doxorubicin accumulation, as measured by [14C]doxorubicin and high-performance liquid chromatography, was decreased by 54% at 1 h for 8226/Dox compared to the sensitive line. Efflux of doxorubicin was significantly greater in the resistant subline as compared to the sensitive parent cell line. Membrane analysis using immunoblotting techniques detected increased expression of the integral membrane protein P-glycoprotein (Mr 170,000) in the resistant subline. Cytogenetic analysis of 8226/Dox revealed a 7q-anomaly not seen in the parent cell line. No double minutes or homogeneously staining regions were observed. The drug sensitivity/resistance pattern of the resistant cell line correlates well with clinical observations indicating the potential of this cell line as a model for resistance in multiple myeloma.

Footnotes

  • ↵1 This study was supported in part by Grants CA-17904, CA-23074, and CA-28139 from the National Cancer Institute and a starter grant from the American Cancer Society, Institutional Review Committee, University of Arizona.

  • ↵2 Recipient of a faculty development award in clinical pharmacology from the Pharmaceutical Manufacturers Association Foundation. To whom requests for reprints should be addressed.

  • Received February 28, 1986.
  • Revision received June 17, 1986.
  • Accepted June 20, 1986.
  • ©1986 American Association for Cancer Research.
PreviousNext
Back to top
October 1986
Volume 46, Issue 10
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of a New Drug-resistant Human Myeloma Cell Line That Expresses P-Glycoprotein
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characterization of a New Drug-resistant Human Myeloma Cell Line That Expresses P-Glycoprotein
William S. Dalton, Brian G. M. Durie, David S. Alberts, James H. Gerlach and Anne E. Cress
Cancer Res October 1 1986 (46) (10) 5125-5130;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characterization of a New Drug-resistant Human Myeloma Cell Line That Expresses P-Glycoprotein
William S. Dalton, Brian G. M. Durie, David S. Alberts, James H. Gerlach and Anne E. Cress
Cancer Res October 1 1986 (46) (10) 5125-5130;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Basic Sciences

  • c-myc Gene-induced Alterations in Protein Kinase C Expression: A Possible Mechanism Facilitating myc-ras Gene Complementation
  • Identification of a Novel Tumor-associated Mr 110,000 Gene Product in Human Gastric Carcinoma Cells That Is Immunologically Related to Carcinoembryonic Antigen
  • Induction of Tissue-type Plasminogen Activator by Ionizing Radiation in Human Malignant Melanoma Cells
Show more Basic Sciences

Articles

  • c-myc Gene-induced Alterations in Protein Kinase C Expression: A Possible Mechanism Facilitating myc-ras Gene Complementation
  • Identification of a Novel Tumor-associated Mr 110,000 Gene Product in Human Gastric Carcinoma Cells That Is Immunologically Related to Carcinoembryonic Antigen
  • Induction of Tissue-type Plasminogen Activator by Ionizing Radiation in Human Malignant Melanoma Cells
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement