Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Basic Sciences

Impaired Glutathione Biosynthesis in Cultured Human Ataxia-Telangiectasia Cells

Michael J. Meredith and Marion L. Dodson
Michael J. Meredith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marion L. Dodson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1987
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Cell lines established from donors with the inherited disorder ataxiatelangiectasia (A-T) exhibit exceptional sensitivity to ionizing radiation and chemicals known to produce increased levels of intracellular H2O2, suggesting a deficiency in glutathione-dependent detoxication reactions. Glutathione (GSH) biosynthesis in fibroblast and lymphoblast cultures derived from individuals known to be clinically unaffected, homozygous, or heterozygous for A-T was assessed. Following GSH depletion by diethylmaleate, fibroblasts (GM 3492) from a clinically unaffected individual resynthesized GSH at a rate approximately twice that observed in fibroblasts from known heterozygotes (GM 3488 and GM 3489). Unrelated A-T homozygote fibroblast lines GM 3487B and GM 5823 resynthesized GSH only very slowly. GM 3492 cells repleted intracellular GSH by 6 h after depletion, the heterozygote lines by 18 h. The A-T homozygotes replaced only 30% of the intracellular GSH pool by 24 h. A lymphoblast cell line from the A-T homozygote (GM 3189) also exhibited slow resynthesis after depletion. However, if these cells were permeabilized by treatment with digitonin, GSH synthesis proceeded at a rate exceeding synthesis in permeabilized or untreated normal lymphoblasts (GM 3323). The first enzyme in GSH synthesis, γ-glutamylcysteine synthetase, was found to be elevated about 2.7-fold in A-T homozygote fibroblasts, suggesting that a substrate for GSH synthesis may be rate limiting. A-T homozygote lymphoblasts contained about 2-fold more γ-cystathionase activity over other cell lines tested suggesting increased flux through the transsulfuration pathway for cysteine production in response to reduced cysteine supply. Transport of cysteine and cystine was found to be 8- and 5-fold slower in A-T homozygotes that did not affect fibroblasts while glutamate and methionine transport Vmax did not differ among the cell lines tested. These experiments demonstrate that cells from A-T homozygotes are deficient in cysteine transport, thus limiting GSH resynthesis after a depleting challenge such as radiation or GSH-depleting xenobiotic compounds.

Footnotes

  • ↵1 This work was supported by grants ES 03272 and ES 00267 from the National Institute of Environmental Health Sciences and RD-240 from the American Cancer Society.

  • Received October 6, 1986.
  • Revision received May 4, 1987.
  • Accepted June 3, 1987.
  • ©1987 American Association for Cancer Research.
PreviousNext
Back to top
September 1987
Volume 47, Issue 17
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Impaired Glutathione Biosynthesis in Cultured Human Ataxia-Telangiectasia Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Impaired Glutathione Biosynthesis in Cultured Human Ataxia-Telangiectasia Cells
Michael J. Meredith and Marion L. Dodson
Cancer Res September 1 1987 (47) (17) 4576-4581;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Impaired Glutathione Biosynthesis in Cultured Human Ataxia-Telangiectasia Cells
Michael J. Meredith and Marion L. Dodson
Cancer Res September 1 1987 (47) (17) 4576-4581;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Basic Sciences

  • Glucocorticoid Insensitivity of P1798 Lymphoma Cells Is Associated with Production of a Factor That Attenuates the Lytic Response
  • Forestomach and Kidney Carcinogenicity of Caffeic Acid in F344 Rats and C57BL/6N × C3H/HeN F1 Mice
  • Immunohistochemical and Pharmacokinetic Characterization of Site-specific Immunoconjugate 15A8-Glycyl-tyrosyl-(N-ε-diethylenetriamine Pentaacetic Acid)-lysine Derived from Anti-Breast Carcinoma Monoclonal Antibody 15A8
Show more Basic Sciences

Articles

  • Glucocorticoid Insensitivity of P1798 Lymphoma Cells Is Associated with Production of a Factor That Attenuates the Lytic Response
  • Forestomach and Kidney Carcinogenicity of Caffeic Acid in F344 Rats and C57BL/6N × C3H/HeN F1 Mice
  • Immunohistochemical and Pharmacokinetic Characterization of Site-specific Immunoconjugate 15A8-Glycyl-tyrosyl-(N-ε-diethylenetriamine Pentaacetic Acid)-lysine Derived from Anti-Breast Carcinoma Monoclonal Antibody 15A8
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement