Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Basic Sciences

Influence of cis-Diamminedichloroplatinum(II) on DNA Synthesis and Cell Cycle Progression in Excision Repair Proficient and Deficient Chinese Hamster Ovary Cells

Christine M. Sorenson and Alan Eastman
Christine M. Sorenson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan Eastman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published December 1988
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

DNA has been implicated as the critical intracellular target for cis-diamminedichloroplatinum(II) (cis-DDP) action. Inhibition of DNA synthesis is a consequence of platination and has become accepted as the critical step in cis-DDP-induced toxicity. We have previously demonstrated that, following incubation with cis-DDP, murine leukemia L1210 cells progress through synthesis only to arrest in the G2 phase of the cell cycle. The G2 arrest was transient at low drug concentrations and was persistent at higher concentrations with a concomitant loss of viability. Chinese hamster ovary cell lines both proficient and deficient for DNA excision repair have been used to analyze the relationship between inhibition of DNA synthesis and toxicity and to determine whether DNA repair is necessary for cell cycle progression. Two repair-deficient cell lines were hypersensitive to cis-DDP and demonstrated a marked arrest in the G2 phase. The arrest was transient over only a small range of concentrations. At higher concentrations, the arrest was persistent and the cells subsequently died. Incorporation of [3H]thymidine into macromolecules demonstrated no inhibition of DNA synthesis while these cells progressed through the S phase. In contrast, at higher, but nontoxic, concentrations of cis-DDP, the repair-proficient cells exhibited inhibition of DNA synthesis while in S. At toxic concentrations, these cells also arrested in G2. Therefore, direct inhibition of DNA synthesis correlated only with the concentration of drug and not with the different sensitivities of the cell lines. Arrest of cells in G2 did correlate with toxicity. In every cell line, the appearance of G2-arrested cells preceded cell disintegration. It is proposed that the G2-arrested cells preceded cell disintegration. It is proposed that the G2 arrest results from the inability of the cells to transcribe genes required for passage into mitosis. Cells proficient in DNA repair can circumvent this arrest by repairing the damaged DNA and permitting transcription to proceed. These results support the hypothesis that inhibition of DNA synthesis is not the critical step in cis-DDP-induced cytotoxicity.

Footnotes

  • ↵1 This work was supported by National Cancer Institute Research Grants CA36039 and CA00906, and by Cancer Center Support Grants CA36727 and ACS SIG-16.

  • ↵2 To whom requests for reprints should be addressed, at Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 42nd and Dewey Avenue, Omaha, NE 68105-1065.

  • Received June 20, 1988.
  • Revision received August 29, 1988.
  • Accepted September 2, 1988.
  • ©1988 American Association for Cancer Research.
PreviousNext
Back to top
December 1988
Volume 48, Issue 23
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Influence of cis-Diamminedichloroplatinum(II) on DNA Synthesis and Cell Cycle Progression in Excision Repair Proficient and Deficient Chinese Hamster Ovary Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Influence of cis-Diamminedichloroplatinum(II) on DNA Synthesis and Cell Cycle Progression in Excision Repair Proficient and Deficient Chinese Hamster Ovary Cells
Christine M. Sorenson and Alan Eastman
Cancer Res December 1 1988 (48) (23) 6703-6707;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Influence of cis-Diamminedichloroplatinum(II) on DNA Synthesis and Cell Cycle Progression in Excision Repair Proficient and Deficient Chinese Hamster Ovary Cells
Christine M. Sorenson and Alan Eastman
Cancer Res December 1 1988 (48) (23) 6703-6707;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Basic Sciences

  • Differential Expression of Transforming Growth Factor-β1 Gene in 3LL Metastatic Variants
  • Extracellular Matrix and the Patterns of Differentiation of Human Endometrial Carcinomas in Vitro and in Vivo
  • O6-Methylguanine Is a Critical Determinant of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Tumorigenesis in A/J Mouse Lung
Show more Basic Sciences

Articles

  • Differential Expression of Transforming Growth Factor-β1 Gene in 3LL Metastatic Variants
  • Extracellular Matrix and the Patterns of Differentiation of Human Endometrial Carcinomas in Vitro and in Vivo
  • O6-Methylguanine Is a Critical Determinant of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Tumorigenesis in A/J Mouse Lung
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement