Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Tumor Angiogenesis and Polyamines: α-Difluoromethylornithine, an Irreversible Inhibitor of Ornithine Decarboxylase, Inhibits B16 Melanoma-induced Angiogenesis in Ovo and the Proliferation of Vascular Endothelial Cells in Vitro

Masaharu Takigawa, Motomi Enomoto, Yukimitsu Nishida, Hai-Ou Pan, Akihiro Kinoshita and Fujio Suzuki
Masaharu Takigawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Motomi Enomoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yukimitsu Nishida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hai-Ou Pan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Akihiro Kinoshita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fujio Suzuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published July 1990
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

α-Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, inhibited B16 melanoma-induced angiogenesis in chick embryo chorioallantoic membrane and subsequently the growth of the tumor on the chorioallantoic membrane. These inhibitions were reversed by exogenous putrescine and spermidine. DFMO also inhibited rapid neovascularization in yolk sac membrane of 4-day-old chick embryos and the inhibition was reversed by exogenous putrescine and spermidine. DFMO strongly inhibited DNA synthesis and proliferation of bovine pulmonary artery endothelial (BPAE) cells in culture and decreased their ornithine decarboxylase activity and intracellular polyamine concentrations. Addition of putrescine to the culture medium of DFMO-treated BPAE cells restored their intracellular putrescine and spermidine concentrations and their DNA synthesis and proliferation. Addition of spermidine to cultures of DFMO-treated BPAE cells restored their intracellular spermidine concentration and their DNA synthesis and proliferation. DFMO inhibited the proliferation of B16 melanoma cells in culture but the inhibitory effect was much less than that on BPAE cells. When one-half the monolayer of confluent cultures of BPAE cells had been peeled off, addition of DFMO to the cultures inhibited the proliferation and extension of the BPAE cells into the vacant area but had no effect on stationary cells in the remaining half of the monolayer, suggesting that it inhibited induction of proliferation of endothelial cells. These findings suggest that the antitumor activity of DFMO against solid tumors is probably due more to its inhibition of tumor-induced angiogenesis by inhibition of proliferation of endothelial cells induced by polyamine depletion than to a direct effect on tumor cell proliferation.

Footnotes

  • ↵1 This paper is dedicated to Dr. R. K. Boutwell on the occasion of his retirement from the University of Wisconsin.

  • ↵2 Supported in part by Grants-in-Aid for Scientific Research (to M. T. and F. S.) and Developmental Scientific Research (to M. T.) from the Ministry of Education, Science and Culture of Japan, and Kudo Scientific Foundation (to M. T.), the Kowa Life Science Foundation (to M. T.), the Research Foundation for Cancer and Cardiovascular Diseases (to M. T.), and the Osaka Anti-Cancer Society (to M. T. and M. E.).

  • ↵3 To whom requests for reprints should be addressed.

  • Received July 12, 1989.
  • Revision received February 19, 1990.
  • ©1990 American Association for Cancer Research.
PreviousNext
Back to top
July 1990
Volume 50, Issue 13
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Tumor Angiogenesis and Polyamines: α-Difluoromethylornithine, an Irreversible Inhibitor of Ornithine Decarboxylase, Inhibits B16 Melanoma-induced Angiogenesis in Ovo and the Proliferation of Vascular Endothelial Cells in Vitro
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Tumor Angiogenesis and Polyamines: α-Difluoromethylornithine, an Irreversible Inhibitor of Ornithine Decarboxylase, Inhibits B16 Melanoma-induced Angiogenesis in Ovo and the Proliferation of Vascular Endothelial Cells in Vitro
Masaharu Takigawa, Motomi Enomoto, Yukimitsu Nishida, Hai-Ou Pan, Akihiro Kinoshita and Fujio Suzuki
Cancer Res July 1 1990 (50) (13) 4131-4138;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Tumor Angiogenesis and Polyamines: α-Difluoromethylornithine, an Irreversible Inhibitor of Ornithine Decarboxylase, Inhibits B16 Melanoma-induced Angiogenesis in Ovo and the Proliferation of Vascular Endothelial Cells in Vitro
Masaharu Takigawa, Motomi Enomoto, Yukimitsu Nishida, Hai-Ou Pan, Akihiro Kinoshita and Fujio Suzuki
Cancer Res July 1 1990 (50) (13) 4131-4138;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Intersections between Blood Cell Development and Leukemia Genes
  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • The Prizes
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement