Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Evaluation of the Antitumor Activity of Gemcitabine (2′,2′-Difluoro-2′-deoxycytidine)

Larry W. Hertel, George B. Boder, J. Stan Kroin, Sharon M. Rinzel, Gerald A. Poore, Glen C. Todd and Gerald B. Grindey
Larry W. Hertel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George B. Boder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Stan Kroin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sharon M. Rinzel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerald A. Poore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Glen C. Todd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerald B. Grindey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published July 1990
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A new pyrimidine antimetabolite, 2′,2′-difluorodeoxycytidine, Gemcitabine (LY188011, dFdCyd) has been synthesized and evaluated in experimental tumor models. dFdCyd is a very potent and specific deoxycytidine analogue. The concentration required for 50% inhibition of growth is 1 ng/ml in the CCRF-CEM human leukemia cell culture assay. Concurrent addition of deoxycytidine to the cell culture system provides about a 1000-fold decrease in biological activity. The inhibition of growth of human leukemia cells in culture led to the in vivo evaluation of this compound as a potential oncolytic agent. Maximal activity in vivo was seen with dFdCyd when administered on an every third day schedule. 1-β-d-Arabinofuranosylcytosine, administered on a daily for 10-day schedule, was directly compared to dFdCyd in this evaluation. dFdCyd demonstrated good to excellent antitumor activity in eight of the eight murine tumor models evaluated. 1-β-d-Arabinofuranosylcytosine was substantially less active or had no activity in these same tumor models. This in vivo activity against murine solid tumors supports the conclusion that dFdCyd is an excellent candidate for clinical trials in the treatment of cancer.

Footnotes

  • ↵1 To whom requests for reprints should be addressed.

  • Received August 28, 1989.
  • Revision received April 2, 1990.
  • ©1990 American Association for Cancer Research.
PreviousNext
Back to top
July 1990
Volume 50, Issue 14
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of the Antitumor Activity of Gemcitabine (2′,2′-Difluoro-2′-deoxycytidine)
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evaluation of the Antitumor Activity of Gemcitabine (2′,2′-Difluoro-2′-deoxycytidine)
Larry W. Hertel, George B. Boder, J. Stan Kroin, Sharon M. Rinzel, Gerald A. Poore, Glen C. Todd and Gerald B. Grindey
Cancer Res July 15 1990 (50) (14) 4417-4422;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evaluation of the Antitumor Activity of Gemcitabine (2′,2′-Difluoro-2′-deoxycytidine)
Larry W. Hertel, George B. Boder, J. Stan Kroin, Sharon M. Rinzel, Gerald A. Poore, Glen C. Todd and Gerald B. Grindey
Cancer Res July 15 1990 (50) (14) 4417-4422;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Laureates
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • The Role of Chimeric Paired Box Transcription Factors in the Pathogenesis of Pediatric Rhabdomyosarcoma
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement