Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Changes in Radiation Sensitization Induced by Fluosol-DA as Measured by 31P Nuclear Magnetic Resonance Spectroscopy

Jason A. Koutcher, Alan A. Alfieri, Alice B. Kornblith, Mary L. Devitt, David Cowburn, Douglas Ballon and Jae H. Kim
Jason A. Koutcher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan A. Alfieri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alice B. Kornblith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary L. Devitt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Cowburn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas Ballon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jae H. Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1990
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Numerous agents have been studied in attempts to sensitize radioresistant hypoxic tumor cells. We have investigated the effect of Fluosol-DA plus carbogen (95% oxygen and 5% CO2) on the sensitivity of a radioresistant mammary carcinoma in C3H/He mice and also on tumor metabolism by 31P nuclear magnetic resonance spectroscopy. Statistically significant increases in phosphocreatine/Pi were noted for small- (150–350 mm3) and medium-(351–650 mm3) sized tumors treated with Fluosol-DA plus carbogen. Small tumors were shown to undergo significant radiosensitization in the presence of Fluosol-DA plus carbogen and medium-sized tumors showed a lesser degree of radiosensitization. Large tumors (>900 mm3) showed no effect. Fluosol-DA or carbogen alone had no effects on animals with any tumor volume, as monitored by significant changes in radiosensitivity or nuclear magnetic resonance parameters. An approximately linear relationship was found between the decrease in the values for radiation dose which yields 50% tumor control and the increase in phosphocreatine/Pi, with a correlation of r = -0.93. 31P nuclear magnetic resonance spectroscopy may be useful for monitoring changes in radiosensitivity induced by agents which alter tumor oxygenation and subsequent metabolic status.

Footnotes

  • ↵1 This work was supported by National Cancer Institute Grant R29 CA 43841 and funds from the Whitaker Foundation.

  • ↵2 To whom requests for reprints should be addressed, at Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021.

  • Received April 30, 1990.
  • Accepted August 20, 1990.
  • ©1990 American Association for Cancer Research.
PreviousNext
Back to top
November 1990
Volume 50, Issue 22
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Changes in Radiation Sensitization Induced by Fluosol-DA as Measured by 31P Nuclear Magnetic Resonance Spectroscopy
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Changes in Radiation Sensitization Induced by Fluosol-DA as Measured by 31P Nuclear Magnetic Resonance Spectroscopy
Jason A. Koutcher, Alan A. Alfieri, Alice B. Kornblith, Mary L. Devitt, David Cowburn, Douglas Ballon and Jae H. Kim
Cancer Res November 15 1990 (50) (22) 7252-7256;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Changes in Radiation Sensitization Induced by Fluosol-DA as Measured by 31P Nuclear Magnetic Resonance Spectroscopy
Jason A. Koutcher, Alan A. Alfieri, Alice B. Kornblith, Mary L. Devitt, David Cowburn, Douglas Ballon and Jae H. Kim
Cancer Res November 15 1990 (50) (22) 7252-7256;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • Introduction of H. Robert Horvitz
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement