Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Perspectives in Cancer Research

Characterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts

Sandra H. Bigner, Peter A. Humphrey, Albert J. Wong, Bert Vogelstein, Joachim Mark, Henry S. Friedman and Darell D. Bigner
Sandra H. Bigner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter A. Humphrey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Albert J. Wong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bert Vogelstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joachim Mark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry S. Friedman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darell D. Bigner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published December 1990
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Both permanent cultured cell lines and athymic mouse xenografts were established from two human glioblastomas. Biopsies from D-245 MG and D-270 MG contained amplified and rearranged epidermal growth factor receptor (EGFR) genes. Although the gene amplification and rearrangement seen originally was maintained in the xenografts, cultured cell lines established from these biopsies lost the amplified rearranged genes in vitro. Analysis of these cell lines and 11 additional permanent human glioma cell lines with normal EGFR gene copy number showed from 2.7 × 103 to 4.1 × 105 high affinity EGFRs/cell by radioreceptor assay. The RNase A protection assay showed minimal differences in the quantity of EGFR mRNA among the 13 glioma lines, while the D-245 MG and D-270 MG xenografts expressed approximately 10–20 times as much EGFR mRNA as the corresponding cell lines. Immunoprecipitation of EGFR from these lines, including D-245 MG and D-270 MG, demonstrated only the intact Mr 170,000 Da form, while truncated Mr 145,000 Da and 100,000 Da EGFR proteins were immunoprecipitated from the D-270 MG and D-245 MG xenografts, respectively. These studies demonstrate that gliomas with amplification of the EGFR gene are capable of establishing in culture but that the amplified rearranged genes are not maintained. Possible explanations are that the abnormal genes are lost during serial passage or that the cells with amplified rearranged genes only represent a minor subpopulation of cells, which are unable to grow in culture. In either case, these observations suggest that high expression and structural abnormalities of EGFR proteins generated by amplification and rearrangement of the EGFR gene provide a growth advantage for gliomas in vivo but not in vitro.

Footnotes

  • ↵1 This investigation was supported in part by Grants CA-11898 (D. D. B), CA-43460 (B. V.), CA-44640 (H. S. F.), and CA-43722 (S. H. B.) from the National Cancer Institute, Grant P01-NS-20023 (D. D. B., H. S. F., P. A. H., S. H. B.) from NINCDS, and the Swedish Cancer Society (J. M.).

  • ↵2 To whom requests for reprints should be addressed.

  • Received June 21, 1990.
  • Accepted September 14, 1990.
  • ©1990 American Association for Cancer Research.
PreviousNext
Back to top
December 1990
Volume 50, Issue 24
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts
Sandra H. Bigner, Peter A. Humphrey, Albert J. Wong, Bert Vogelstein, Joachim Mark, Henry S. Friedman and Darell D. Bigner
Cancer Res December 15 1990 (50) (24) 8017-8022;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts
Sandra H. Bigner, Peter A. Humphrey, Albert J. Wong, Bert Vogelstein, Joachim Mark, Henry S. Friedman and Darell D. Bigner
Cancer Res December 15 1990 (50) (24) 8017-8022;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Perspectives in Cancer Research

  • Lessons from Applied Ecology: Cancer Control Using an Evolutionary Double Bind
  • Behavioral Oncology and the War on Cancer: Partnering with Biomedicine
  • Did Experimental Biology Die? Lessons from 30 Years of p53 Research
Show more Perspectives in Cancer Research

Articles

  • Lessons from Applied Ecology: Cancer Control Using an Evolutionary Double Bind
  • Behavioral Oncology and the War on Cancer: Partnering with Biomedicine
  • Did Experimental Biology Die? Lessons from 30 Years of p53 Research
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement