Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Articles

Cell Membrane Signaling as Target in Cancer Therapy: Inhibitory Effect of N,N-Dimethyl and N,N,N-Trimethyl Sphingosine Derivatives on in Vitro and in Vivo Growth of Human Tumor Cells in Nude Mice

Katsuyuki Endo, Yasuyuki Igarashi, Mohammad Nisar, Qinghong Zhou and Sen-itiroh Hakomori
Katsuyuki Endo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasuyuki Igarashi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohammad Nisar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qinghong Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sen-itiroh Hakomori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published March 1991
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Sphingosine (SPN) has been claimed to be a negative modulator of transmembrane signaling through protein kinase C (PK-C) or some yet unidentified mechanism [for review see Y. A. Hannun and R. M. Bell, Science (Washington DC), 243: 500–507, 1989]. N,N-Dimethylsphingosine (DMS) was recently found to be a physiological cellular component and, in comparison to SPN, to show a stronger and stereospecific inhibitory effect on PK-C activity of A431 cells (for review see Y. Igarashi, Trends Glycosci. Glycotechnol., 2: 319–332, 1990; and S. Hakomori, J. Biol. Chem., 265: 18713–18716, 1990). (4E)-N,N,N-Trimethyl-d-erythro-sphingenine (TMS) is not detectable as a normal cellular component; however, it is expected to exhibit potent activity because of its quaternary ammonium ion structure, and in fact it showed much stronger inhibitory effect than DMS or SPN on PK-C activity (which plays an important role in cell growth regulation) in vitro. In view of these findings, we investigated the effects of SPN, DMS, and TMS on in vitro growth of various human carcinoma cell lines and on in vivo tumor growth in athymic nu/nu mice. Both DMS and TMS showed similar in vitro and in vivo growth inhibitory effects on tumor cells, despite the fact that TMS showed a much stronger inhibitory effect than DMS on PK-C activity of A431 cells. In contrast, SPN showed only a weak effect on in vitro cell growth and no effect on in vivo tumor growth. Tumor growth following s.c. inoculation of mice with human gastric carcinoma cell line MKN74 was inhibited in a dose-dependent manner by DMS, and tumor size was decreased after three or four consecutive daily injections of 0.5-mg doses of DMS or TMS. Increased tumor growth occurred after administration of these compounds was stopped; however, size of tumor remained significantly smaller than in groups treated with SPN or control saline. The effect of DMS or TMS on in vitro or in vivo MKN74 cell growth was stronger than that of 8-chloro-adenosine-cyclic 3′:5′-monophosphate dihydrate, the most promising agent currently being used in clinical trials for inhibition of tumor growth by induction of differentiation. These results suggest that DMS or TMS could be useful anticancer agents through modification of transmembrane signaling related to cancer cell growth.

Footnotes

  • ↵1 The study was supported by the National Cancer Institute Outstanding Investigator Grant CA42505 and by funds from The Biomembrane Institute and Otsuka Pharmaceutical Co., Ltd. This study is the first in a series of related papers.

  • Received October 29, 1990.
  • Accepted January 7, 1991.
  • ©1991 American Association for Cancer Research.
PreviousNext
Back to top
March 1991
Volume 51, Issue 6
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cell Membrane Signaling as Target in Cancer Therapy: Inhibitory Effect of N,N-Dimethyl and N,N,N-Trimethyl Sphingosine Derivatives on in Vitro and in Vivo Growth of Human Tumor Cells in Nude Mice
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Cell Membrane Signaling as Target in Cancer Therapy: Inhibitory Effect of N,N-Dimethyl and N,N,N-Trimethyl Sphingosine Derivatives on in Vitro and in Vivo Growth of Human Tumor Cells in Nude Mice
Katsuyuki Endo, Yasuyuki Igarashi, Mohammad Nisar, Qinghong Zhou and Sen-itiroh Hakomori
Cancer Res March 15 1991 (51) (6) 1613-1618;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cell Membrane Signaling as Target in Cancer Therapy: Inhibitory Effect of N,N-Dimethyl and N,N,N-Trimethyl Sphingosine Derivatives on in Vitro and in Vivo Growth of Human Tumor Cells in Nude Mice
Katsuyuki Endo, Yasuyuki Igarashi, Mohammad Nisar, Qinghong Zhou and Sen-itiroh Hakomori
Cancer Res March 15 1991 (51) (6) 1613-1618;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • Multiple Roles for the Wilms' Tumor Suppressor, WT1
  • Membership of Awards Assembly
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2019 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement