Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells

Masayuki Nakagawa, Erasmus Schneider, Katharine H. Dixon, Julie Horton, Kristin Kelley, Charles Morrow and Kenneth H. Cowan
Masayuki Nakagawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erasmus Schneider
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katharine H. Dixon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie Horton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristin Kelley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles Morrow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth H. Cowan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1992
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A mitoxantrone-resistant human MCF-7 breast cancer subline (MCF/MX) which is approximately 4000-fold resistant to mitoxantrone was isolated by serial passage of the parental wild-type MCF-7 cells (MCF/WT) in stepwise increasing concentrations of drug. MCF/MX cells were also approximately 10-fold cross-resistant to doxorubicin and etoposide but were not cross-resistant to vinblastine. Intracellular accumulation of radiolabeled mitoxantrone was markedly reduced in MCF/MX cells relative to that in the drug-sensitive MCF/WT cells. This decrease in intracellular drug accumulation into MCF/MX cells was associated with enhanced drug efflux, which was reversed when cells were incubated in the presence of sodium azide and 2, 4-dinitrophenol, suggesting an energy-dependent process. Incubation of MCF/MX cells with verapamil did not affect either the accumulation of mitoxantrone or the level of resistance in these cells. Furthermore, RNase protection and Western blot analyses failed to detect the expression of the mdr1 RNA or P-glycoprotein, a drug efflux pump known to be associated with the development of multidrug resistance in vitro. However, a polyclonal antibody directed against a synthetic peptide corresponding to the putative ATP binding domain of P-glycoprotein reacted with two (Mr 42,000 and 85,000) membrane proteins from MCF/MX cells which were not found in MCF/WT. Functional assays and Western blot analysis for topoisomerase II revealed no differences in topoisomerase II activity or protein levels in MCF/MX cells. Thus, resistance in this cell line is apparently associated with enhanced drug efflux involving a pathway distinct from the mdr1-encoded multidrug transporter P-glycoprotein.

Footnotes

  • ↵1 To whom requests for reprints should be addressed, at Building 10, Room 12N226, National Cancer Institute, Bethesda, MD 20892.

  • Received September 5, 1991.
  • Accepted September 9, 1992.
  • ©1992 American Association for Cancer Research.
PreviousNext
Back to top
November 1992
Volume 52, Issue 22
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells
Masayuki Nakagawa, Erasmus Schneider, Katharine H. Dixon, Julie Horton, Kristin Kelley, Charles Morrow and Kenneth H. Cowan
Cancer Res November 15 1992 (52) (22) 6175-6181;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells
Masayuki Nakagawa, Erasmus Schneider, Katharine H. Dixon, Julie Horton, Kristin Kelley, Charles Morrow and Kenneth H. Cowan
Cancer Res November 15 1992 (52) (22) 6175-6181;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Membership of Awards Assembly
  • Radiation Biology and Treatment Options in Radiation Oncology
  • Developmental Basis of Retinal-specific Induction of Cancer by RB Mutation
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement