Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Failure of RB1 to Reverse the Malignant Phenotype of Human Tumor Cell Lines

Michelle M. Muncaster, Brenda L. Cohen, Robert A. Phillips and Brenda L. Gallie
Michelle M. Muncaster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brenda L. Cohen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert A. Phillips
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brenda L. Gallie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1992
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

In addition to retinoblastoma and osteosarcoma, mutation of both alleles of the RB1 gene occurs frequently in several other types of tumors. In order to evaluate the role of RB1 in cancer, the wild type RB1 gene was introduced into the RB1-deleted breast cancer cell line MDA-468-S4 and retinoblastoma cell lines WERI-Rb1 and Y-79. The RB1 complementary DNA was under control of the inducible murine metallothionein promoter in MDA-468-S4 and the thymidine kinase promoter in the retinoblastoma lines. The protein, p110RB1, produced from the exogenously introduced gene appeared normal by immunoprecipitation, Western blot analysis, and nuclear localization and also showed normal cell cycle-dependent phosphorylation and an ability to bind to E1a protein. No changes in growth rate or morphology were observed in either of the reconstituted cell types. Expression of p110RB1 in MDA-468-S4 did not affect anchorage-independent growth when measured by colony formation in soft agar. Although the ability of WERI-Rb1 cells expressing p110RB1 to form colonies in methylcellulose was reduced, the reconstituted retinoblastoma cell lines formed intraocular tumors in immunodeficient mice with the same efficiency as the RB1-negative parent cell lines and the tumors produced by the RB1-reconstituted cells continued to express p110RB1. These experimental results suggest that the malignant phenotype is little affected by the replacement of p110RB1 and that RB1 is a relatively weak tumor suppressor gene.

Footnotes

  • ↵1 This work was supported by the Terry Fox Program Project Grant from the National Cancer Institute of Canada, the Medical Research Council of Canada Grant MA6491, the Retinoblastoma Family Association, and the Royal Arch Masons of Canada. M. M. M. was funded by National Sciences and Engineering Research Council of Canada. B. L. G. is a Research Associate of the Ontario Cancer Treatment and Research Foundation.

  • ↵2 To whom requests for reprints should be addressed, at Division of Immunology and Cancer, Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada M5G 1X8.

  • ↵3 The first two authors have contributed equally to this work.

  • Received November 20, 1991.
  • Accepted December 2, 1991.
  • ©1992 American Association for Cancer Research.
PreviousNext
Back to top
February 1992
Volume 52, Issue 3
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Failure of RB1 to Reverse the Malignant Phenotype of Human Tumor Cell Lines
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Failure of RB1 to Reverse the Malignant Phenotype of Human Tumor Cell Lines
Michelle M. Muncaster, Brenda L. Cohen, Robert A. Phillips and Brenda L. Gallie
Cancer Res February 1 1992 (52) (3) 654-661;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Failure of RB1 to Reverse the Malignant Phenotype of Human Tumor Cell Lines
Michelle M. Muncaster, Brenda L. Cohen, Robert A. Phillips and Brenda L. Gallie
Cancer Res February 1 1992 (52) (3) 654-661;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Introduction of H. Robert Horvitz
  • Intersections between Blood Cell Development and Leukemia Genes
  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement