Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Inhibitory Effect of Green Tea in the Drinking Water on Tumorigenesis by Ultraviolet Light and 12-O-Tetradecanoylphorbol-13-acetate in the Skin of SKH-1 Mice

Zhi-Yuan Wang, Mou-Tuan Huang, Thomas Ferraro, Ching-Quo Wong, You-Rong Lou, Kenneth Reuhl, Michael Iatropoulos, Chung S. Yang and Allan H. Conney
Zhi-Yuan Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mou-Tuan Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Ferraro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ching-Quo Wong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
You-Rong Lou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth Reuhl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Iatropoulos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chung S. Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allan H. Conney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published March 1992
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Green tea was prepared by extracting 12.5 g of green tea leaves twice with 500 ml of boiling water, and the extracts were combined. This 1.25% green tea extract (1.25 g of tea leaves/100 ml of water) contained 4.69 mg of green tea extract solids per ml and was similar in composition to some green tea beverages consumed by humans. A 2.5% green tea extract (2.5 g of tea leaves/100 ml of water) was prepared similarly. Treatment of female SKH-1 mice with 180 mJ/cm2 of ultraviolet B light (UVB) once daily for 7 days resulted in red sunburn lesions of the skin. The intensity of red color and area of these lesions were inhibited in a dose-dependent fashion by the administration of 1.25 or 2.5% green tea extract as the sole source of drinking water before and during UVB treatment. Treatment of female SKH-1 mice with 180 mJ/cm2 of UVB once daily for 10 days followed 1 wk later by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 25 wk resulted in the development of skin tumors. The formation of skin tumors was inhibited by administration of 1.25% green tea extract as the sole source of drinking water prior to and during the 10 days of UVB treatment and for 1 wk after UVB treatment. In additional experiments, female SKH-1 mice were treated with 200 nmol of 7,12-dimethylbenz(a)anthracene followed 3 wk later by irradiation with 180, 60, or 30 mJ/cm2 of UVB twice weekly for 30 wk. UVB-induced formation of skin tumors and increased spleen size were inhibited by administration of 1.25% green tea extract as the sole source of drinking water prior to and during the 30 wk of UVB treatment. In these experiments, treatment of the animals with the green tea extract not only decreased the number of skin tumors but also decreased substantially the size of the tumors. In additional studies, SKH-1 mice were initiated by topical application of 200 nmol of 7,12-dimethyl-benz(a)anthracene followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 25 wk. Administration of 1.25% green tea extract as the sole source of drinking water during promotion with 12-O-tetradecanoylphorbol-13-acetate reduced the number and incidence of skin tumors.

Footnotes

  • ↵1 Supported by Grant CA49756 from the NIH.

  • ↵2 To whom requests for reprints should be addressed.

  • Received August 14, 1991.
  • Accepted December 13, 1991.
  • ©1992 American Association for Cancer Research.
PreviousNext
Back to top
March 1992
Volume 52, Issue 5
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibitory Effect of Green Tea in the Drinking Water on Tumorigenesis by Ultraviolet Light and 12-O-Tetradecanoylphorbol-13-acetate in the Skin of SKH-1 Mice
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inhibitory Effect of Green Tea in the Drinking Water on Tumorigenesis by Ultraviolet Light and 12-O-Tetradecanoylphorbol-13-acetate in the Skin of SKH-1 Mice
Zhi-Yuan Wang, Mou-Tuan Huang, Thomas Ferraro, Ching-Quo Wong, You-Rong Lou, Kenneth Reuhl, Michael Iatropoulos, Chung S. Yang and Allan H. Conney
Cancer Res March 1 1992 (52) (5) 1162-1170;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inhibitory Effect of Green Tea in the Drinking Water on Tumorigenesis by Ultraviolet Light and 12-O-Tetradecanoylphorbol-13-acetate in the Skin of SKH-1 Mice
Zhi-Yuan Wang, Mou-Tuan Huang, Thomas Ferraro, Ching-Quo Wong, You-Rong Lou, Kenneth Reuhl, Michael Iatropoulos, Chung S. Yang and Allan H. Conney
Cancer Res March 1 1992 (52) (5) 1162-1170;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • BRCA1, BRCA2, and Rad51 Operate in a Common DNA Damage Response Pathway
  • Introduction of H. Robert Horvitz
  • Membership of Selection Committees
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement