Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Articles

Metabolism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Human Lung and Liver Microsomes and Cytochromes P-450 Expressed in Hepatoma Cells

Theresa J. Smith, Zuyu Guo, Frank J. Gonzalez, F. Peter Guengerich, Gary D. Stoner and Chung S. Yang
Theresa J. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zuyu Guo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank J. Gonzalez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Peter Guengerich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary D. Stoner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chung S. Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published April 1992
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-specific carcinogen in animals, has been linked to tobacco-related cancers in humans. The cytochrome(s) P-450 (P-450) responsible for the metabolic activation of NNK in humans has not been identified. The present work investigated the ability of human lung and liver microsomes and 12 forms of human P-450, expressed in Hep G2 (hepatoma) cells, to metabolize NNK. Of the 12 P-450 forms, P-450 1A2 had the highest activity in catalyzing the conversion of NNK to the keto alcohol, 4-hydroxy-1-(3-pyridyl)-1-butanone. P-450s 2A6, 2B7, 2E1, 2F1, and 3A5 also had measurable activities in the formation of keto alcohol. The apparent Km and Vmax for the formation of keto alcohol in the P-450 1A2-expressed Hep G2 cell lysate were 309 µm and 55 pmol/min/mg protein, respectively. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol, a reductive product, was the major metabolite formed, whereas the formation of keto alcohol and its aldehyde and acid derivatives (all α-hydroxylation products) constituted approximately 1% of the initial amount of NNK in P450-expressed Hep G2 cell lysate. A similar metabolite pattern was observed with human lung or liver microsomes. In human lung microsomes, the apparent Kms for the formation of 4-hydroxy-4-(3-pyridyl)butyric acid, 4-oxo-1-(3-pyridyl)-1-butanone, NNK-N-oxide, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were 526, 653, 531, and 573 µm, respectively; the formation of keto alcohol was not observed. For human lung microsomes, there was no sex-related difference in NNK metabolism. Carbon monoxide (90% atmosphere) significantly inhibited the metabolism of NNK in human lung and liver microsomes. 7,8-Benzoflavone, an inhibitor of P-450s 1A1 and 1A2, had no effect on NNK metabolism in human lung microsomes but decreased the formation of keto alcohol by 47% in human liver microsomes. Similarly, antibodies against human P-450s 1A2 and 2E1 decreased keto alcohol formation by 42% and 53%, respectively, in human liver microsomes but did not affect NNK metabolism in lung microsomes. Inhibitory antibodies against P-450s 2A1, 2C8, 2D1, or 3A4 had little or no effect on the metabolism of NNK in human liver or lung microsomes. These results demonstrate that human liver and lung microsomes have the capacity to metabolize NNK and that different P-450 forms are responsible for the formation of different metabolites and suggest that other enzymes may be important in the activation of this carcinogen in the human lung.

Footnotes

  • ↵1 Supported by NIH Grants CA46535, CA37037, and CA44353; a fellowship from the New Jersey Commission on Cancer Research (89-2050); and National Institute of Environmental Health Services Grants ES-05022 and ES-00267.

  • ↵2 To whom requests for reprints should be addressed, at Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08855-0789.

  • Received October 23, 1991.
  • Accepted January 24, 1992.
  • ©1992 American Association for Cancer Research.
PreviousNext
Back to top
April 1992
Volume 52, Issue 7
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Human Lung and Liver Microsomes and Cytochromes P-450 Expressed in Hepatoma Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Metabolism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Human Lung and Liver Microsomes and Cytochromes P-450 Expressed in Hepatoma Cells
Theresa J. Smith, Zuyu Guo, Frank J. Gonzalez, F. Peter Guengerich, Gary D. Stoner and Chung S. Yang
Cancer Res April 1 1992 (52) (7) 1757-1763;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Metabolism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Human Lung and Liver Microsomes and Cytochromes P-450 Expressed in Hepatoma Cells
Theresa J. Smith, Zuyu Guo, Frank J. Gonzalez, F. Peter Guengerich, Gary D. Stoner and Chung S. Yang
Cancer Res April 1 1992 (52) (7) 1757-1763;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • The Prizes
  • Mammary Gland Development, Reproductive History, and Breast Cancer Risk
  • Pax Genes and Their Role in Organogenesis
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement