Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Loss of a p53-associated G1 Checkpoint Does Not Decrease Cell Survival following DNA Damage

William J. Slichenmyer, William G. Nelson, Robbert J. Slebos and Michael B. Kastan
William J. Slichenmyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William G. Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robbert J. Slebos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael B. Kastan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1993
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Cell cycle checkpoints regulate progression through the cell cycle. In yeast, loss of the G2 checkpoint by mutation of the rad9 gene results in increased genetic instability as well as increased sensitivity to ionizing radiation. In contrast, comparing clonogenic survival of cells which are isogeneic except for p53 functional status, we find that loss of a G1 check-point in mammalian cells is not associated with increased sensitivity to the lethal effects of ionizing radiation or a topoisomerase I inhibitor, camptothecin. These results indicate that increased sensitivity to DNA-damaging agents is not necessarily a defining feature of a mammalian cell cycle checkpoint. Furthermore, in light of a recent link of p53 function to radiation-induced apoptosis in hematopoietic cells, these observations suggest that p53-dependent apoptosis is a cell type-specific phenomenon and thus predict that the biological consequences of loss of p53 function will be cell type specific.

Footnotes

  • ↵1 This work was supported by Grant ES05777 from the NIH, Grants 3187 and 3223 from The Council for Tobacco Research, and the Dutch Cancer Society.

  • ↵2 To whom requests for reprints should be addressed.

  • Received June 29, 1993.
  • Accepted August 3, 1993.
  • ©1993 American Association for Cancer Research.
PreviousNext
Back to top
September 1993
Volume 53, Issue 18
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Loss of a p53-associated G1 Checkpoint Does Not Decrease Cell Survival following DNA Damage
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Loss of a p53-associated G1 Checkpoint Does Not Decrease Cell Survival following DNA Damage
William J. Slichenmyer, William G. Nelson, Robbert J. Slebos and Michael B. Kastan
Cancer Res September 15 1993 (53) (18) 4164-4168;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Loss of a p53-associated G1 Checkpoint Does Not Decrease Cell Survival following DNA Damage
William J. Slichenmyer, William G. Nelson, Robbert J. Slebos and Michael B. Kastan
Cancer Res September 15 1993 (53) (18) 4164-4168;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • Recombinant Listeria Vaccines Containing PEST Sequences Are Potent Immune Adjuvants for the Tumor-Associated Antigen Human Papillomavirus-16 E7
  • Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-2 Fusion cDNA for Cancer Gene Immunotherapy
  • 2-Arachidonoylglycerol
Show more Advances in Brief

Articles

  • Multiple Roles for the Wilms' Tumor Suppressor, WT1
  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Membership of Awards Assembly
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement