Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

bcl-2 Protein Inhibits Etoposide-induced Apoptosis through Its Effects on Events Subsequent to Topoisomerase II-induced DNA Strand Breaks and Their Repair

Saori Kamesaki, Hiroshi Kamesaki, Timothy J. Jorgensen, Akihiko Tanizawa, Yves Pommier and Jeffrey Cossman
Saori Kamesaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Kamesaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy J. Jorgensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Akihiko Tanizawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yves Pommier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey Cossman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1993
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Previous studies have shown that bcl-2 overexpression can inhibit apoptosis induced by DNA-damaging agents widely used in cancer chemotherapy, including X-irradiation, alkylating agents (hydroperoxycyclophosphamide, etc.), and topoisomerase II inhibitors (etoposide, etc.). However, little is known about the mechanism by which bcl-2 overexpression inhibits apoptosis triggered by these agents. In this study, we examined whether bcl-2 overexpression could have effects on etoposide-induced DNA damage and its repair. For these experiments, we developed CH31 clones (mouse B-cells) stably transfected with human bcl-2 sense plasmids and compared these clones with a parental CH31 clone or CH31 clones with antisense plasmids. Overexpression of bcl-2 protein inhibited etoposide-induced apoptosis and cytotoxicity. However, there was no or little difference in the production and repair of DNa-protein cross-links, DNA single-strand breaks, and double-strand breaks among a parental CH31 clone and CH31 clones with human bcl-2 sense or antisense plasmids. These findings indicate that (a) apoptosis or cytotoxicity induced by etoposide can be separated into early events (formation of double-strand breaks, DNA single-strand breaks, and double-strand breaks) and later events (secondary DNA fragmentation or cell death) and (b) bcl-2 inhibits apoptosis and cytotoxicity induced by etoposide at some steps between these events.

Footnotes

  • ↵1 This work was supported by grants to J. C. (ACS-PDT428) and T. J. J. (CA-48716).

  • ↵2 To whom requests for reprints should be addressed, at Department of Pathology, Georgetown University School of Medicine, 3900 Reservoir Road, N.W., Washington, DC 20007.

  • Received March 8, 1993.
  • Accepted July 12, 1993.
  • ©1993 American Association for Cancer Research.
PreviousNext
Back to top
September 1993
Volume 53, Issue 18
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
bcl-2 Protein Inhibits Etoposide-induced Apoptosis through Its Effects on Events Subsequent to Topoisomerase II-induced DNA Strand Breaks and Their Repair
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
bcl-2 Protein Inhibits Etoposide-induced Apoptosis through Its Effects on Events Subsequent to Topoisomerase II-induced DNA Strand Breaks and Their Repair
Saori Kamesaki, Hiroshi Kamesaki, Timothy J. Jorgensen, Akihiko Tanizawa, Yves Pommier and Jeffrey Cossman
Cancer Res September 15 1993 (53) (18) 4251-4256;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
bcl-2 Protein Inhibits Etoposide-induced Apoptosis through Its Effects on Events Subsequent to Topoisomerase II-induced DNA Strand Breaks and Their Repair
Saori Kamesaki, Hiroshi Kamesaki, Timothy J. Jorgensen, Akihiko Tanizawa, Yves Pommier and Jeffrey Cossman
Cancer Res September 15 1993 (53) (18) 4251-4256;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
  • All-trans-Retinoic Acid Eliminates Immature Myeloid Cells from Tumor-bearing Mice and Improves the Effect of Vaccination
  • The Biological and Biochemical Effects of CP-654577, a Selective erbB2 Kinase Inhibitor, on Human Breast Cancer Cells
Show more Experimental Therapeutics

Articles

  • Laureate Citations
  • The Partial Homeodomain of the Transcription Factor Pax-5 (BSAP) Is an Interaction Motif for the Retinoblastoma and TATA-binding Proteins
  • Core-Binding Factor: A Central Player in Hematopoiesis and Leukemia
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement