Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

In Vitro and in Vivo Reversal of Multidrug Resistance by GF120918, an Acridonecarboxamide Derivative

François Hyafil, Catherine Vergely, Pierre Du Vignaud and Thierry Grand-Perret
François Hyafil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine Vergely
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Du Vignaud
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thierry Grand-Perret
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 1993
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) has been selected from a chemical program aimed at identifying an optimized inhibitor of multidrug resitance (MDR). The potency of GF120918 is assessed by dose-dependent sensitization of CHRC5, OV1/DXR and MCF7/ADR cells to the cytotoxicity of doxorubicin and vincristine respectively: GF120918 fully reverses multidrug resistance at 0.05 to 0.1 µm and is half maximally active at 0.02 µm. The spectrum of drugs sensitized by GF120918 coincides with those having the classical MDR phenotype. In CHRC5 cells, 0.01–0.1 µm GF120918 enhances the uptake of [3H]daunorubicin and blocks the efflux from preloaded cells. It is also shown that GF120918 is still active several hours after being taken away from the culture medium showing that it is not, like verapamil, effluxed rapidly by P-glycoprotein. GF120918 effectively competes with [3H]azidopine for binding P-glycoprotein, pointing to this transport membrane protein as its likely site of action.

After i.v. administration to mice, GF120918 penetrates thoroughly various organs that have a tissue level/blood level ratio above 10. It is eliminated from organs and blood with a half-time of approximately 2.7 h. It is well absorbed after p.o. administration.

In mice implanted i.p. with the MDR P388/Dox tumor, a single i.v. or p.o. dose of GF120918 restores sensitivity of the tumor to a single i.p. dose (5 mg/kg) of doxorubicin administered 1 h later. A statistically significant effect is observed at 1 mg/kg GF120918 i.v. and maximal effect is reached at 5 mg/kg. Similarly, whereas neither drug alone is effective, GF120918 (10 mg/kg i.p.) associated with doxorubicin (5 mg/kg i.p.) inhibits the growth of the moderately MDR C26 tumor implanted s.c. as assessed by tumor size at day 19. GF120918 does not modify significantly the distribution or the elimination of doxorubicin in mice ruling out the possibility that the antitumor effects seen might be explained by pharmacokinetic interactions.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Received March 19, 1993.
  • Accepted July 23, 1993.
  • ©1993 American Association for Cancer Research.
PreviousNext
Back to top
October 1993
Volume 53, Issue 19
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In Vitro and in Vivo Reversal of Multidrug Resistance by GF120918, an Acridonecarboxamide Derivative
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
In Vitro and in Vivo Reversal of Multidrug Resistance by GF120918, an Acridonecarboxamide Derivative
François Hyafil, Catherine Vergely, Pierre Du Vignaud and Thierry Grand-Perret
Cancer Res October 1 1993 (53) (19) 4595-4602;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
In Vitro and in Vivo Reversal of Multidrug Resistance by GF120918, an Acridonecarboxamide Derivative
François Hyafil, Catherine Vergely, Pierre Du Vignaud and Thierry Grand-Perret
Cancer Res October 1 1993 (53) (19) 4595-4602;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Phase I Trial of Intraperitoneal Iododeoxyuridine with and without Intravenous High-Dose Folinic Acid in the Treatment of Advanced Malignancies Primarily Confined to the Peritoneal Cavity: Flow Cytometric and Pharmacokinetic Analysis
  • Mitochondrial Membrane Potential (ΔΨmt) in the Coordination of p53-independent Proliferation and Apoptosis Pathways in Human Colonic Carcinoma Cells
  • Death of Tumor Cells after Intracellular Acidification Is Dependent on Stress-activated Protein Kinases (SAPK/JNK) Pathway Activation and Cannot Be Inhibited by Bcl-2 Expression or Interleukin 1β-converting Enzyme Inhibition
Show more Regular Articles

Experimental Therapeutics

  • Novel Mechanisms of Apoptosis Induced by Histone Deacetylase Inhibitors
  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
Show more Experimental Therapeutics

Articles

  • Novel Mechanisms of Apoptosis Induced by Histone Deacetylase Inhibitors
  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement