Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

Interstitial Chemotherapy of the 9L Gliosarcoma: Controlled Release Polymers for Drug Delivery in the Brain

Rafael J. Tamargo, John S. Myseros, Jonathan I. Epstein, Michael B. Yang, Mark Chasin and Henry Brem
Rafael J. Tamargo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John S. Myseros
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan I. Epstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael B. Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Chasin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry Brem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published January 1993
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The administration of drugs directly into the central nervous system using polymers as drug carriers may improve the treatment of malignant brain tumors. In this study, the effect of the interstitial, localized delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) incorporated into controlled release polymers implanted adjacent to the 9L gliosarcoma was assessed in s.c. and intracranial (i.c.) models. In the s.c. experiment, the 9L gliosarcoma was implanted in the flank of rats and subsequently treated with BCNU either (a) delivered in controlled release polymers inserted adjacent to the tumor or (b) administered systemically by i.p. injections or by controlled release polymers inserted at a site distant from the tumor. The interstitial release of BCNU adjacent to the tumor in the flank resulted in a significant tumor growth delay of 16.3 days, as compared to a growth delay of 9.3 and 11.2 days obtained with the systemic administration of BCNU. In the i.c. experiment, the 9L gliosarcoma was implanted in the brain of Fischer 344 rats and treated either (a) with controlled release polymers containing BCNU inserted into the brain or (b) with the systemic i.p. administration of BCNU. The interstitial release of BCNU in the brain resulted in a significant 5.4- to 7.3-fold increased survival, compared with a 2.4-fold increased survival after the systemic administration of the same dose of BCNU. The two groups with i.c. tumors treated interstitially had 17 and 42% cures, but no long-term cures were obtained in the group treated with systemic therapy. The localized, controlled delivery of chemotherapeutic agents in the s.c. tissues and in the brain via polymeric carriers may be more effective than standard systemic chemotherapy. This approach could be used to deliver a wide variety of agents into the central nervous system to treat diverse neuropathological conditions which remain refractory to systemic therapy.

Footnotes

  • ↵1 Supported by the Association for Brain Tumor Research Fellowship in memory of Steven Lowe, NIH Grant NS01058-01, National Cancer Institute Grant U01 CA52857, and a grant from Nova Pharmaceutical Company.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Received August 4, 1992.
  • Accepted November 25, 1992.
  • ©1993 American Association for Cancer Research.
PreviousNext
Back to top
January 1993
Volume 53, Issue 2
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interstitial Chemotherapy of the 9L Gliosarcoma: Controlled Release Polymers for Drug Delivery in the Brain
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Interstitial Chemotherapy of the 9L Gliosarcoma: Controlled Release Polymers for Drug Delivery in the Brain
Rafael J. Tamargo, John S. Myseros, Jonathan I. Epstein, Michael B. Yang, Mark Chasin and Henry Brem
Cancer Res January 15 1993 (53) (2) 329-333;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Interstitial Chemotherapy of the 9L Gliosarcoma: Controlled Release Polymers for Drug Delivery in the Brain
Rafael J. Tamargo, John S. Myseros, Jonathan I. Epstein, Michael B. Yang, Mark Chasin and Henry Brem
Cancer Res January 15 1993 (53) (2) 329-333;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Antibodies against GD2 Ganglioside Can Eradicate Syngeneic Cancer Micrometastases
  • Aspirin Toxicity for Human Colonic Tumor Cells Results from Necrosis and Is Accompanied by Cell Cycle Arrest
  • Elevated Frequencies of Benzo(a)pyrene-induced Hprt Mutations in Internal Tissue of XPA-deficient Mice
Show more Regular Articles

Experimental Therapeutics

  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
Show more Experimental Therapeutics

Articles

  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement