Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

Role of Human Microsomal and Human Complementary DNA-expressed Cytochromes P4501A2 and P4503A4 in the Bioactivation of Aflatoxin B1

E. P. Gallagher, L. C. Wienkers, P. L. Stapleton, K. L. Kunze and D. L. Eaton
E. P. Gallagher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. C. Wienkers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. L. Stapleton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. L. Kunze
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. L. Eaton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published January 1994
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The metabolism of the carcinogenic mycotoxin aflatoxin B1 (AFB1) was examined in microsomes derived from human lymphoblastoid cell lines expressing transfected CYP1A2 or CYP3A4 complementary DNAs and in microsomes prepared from human liver donors (n = 4). Lymphoblast microsomes expressing only CYP1A2 activated AFB1 to AFB1-8,9-epoxide (AFB1-8,9-epoxide trapped as the glutathione, conjugate) at both 16 µm and 128 µm AFB1 concentrations, whereas activation of AFB1 to the epoxide in lymphoblast microsomes expressing only CYP3A4 was detected only at high substrate concentrations (128 µm AFB1). AFB1 epoxidation was strongly inhibited in CYP1A2 but not CYP3A4 lymphoblast microsomes pretreated with furafylline, a specific mechanism-based CYP1A2 inhibitor, whereas troleandomycin (TAO), a specific CYP3A inhibitor, strongly inhibited AFB1 epoxidation in CYP3A4 but not CYP1A2 microsomes. Formation of the hydroxylated metabolite aflatoxin M1 (AFM1) was observed only in the CYP1A2 microsomes whereas aflatoxin Q1 (AFQ1) production was observed exclusively in the CYP3A4 microsomes. Treatment of individual human liver microsomes (HLM) with TAO resulted in an average 20% inhibition of AFB1-8,9-epoxide formation at 16 /am AFBi, whereas incubation of HLM with furafylline at 16 µm AFB1 resulted in an average 72% inhibition of AFB1-8,9-epoxide formation at 16 µm AFB1. TAO was slightly more effective than furafylline in inhibiting AFB1 epoxidation at 128 µm AFB1 (46% inhibition by TAO, 32% inhibition by furafylline) in HLM. AFB1-8,9-epoxide formation was inhibited by 89% at low substrate concentration and 85% at high substrate concentrations when HLM were inhibited with a ftirafylline/TAO mixture. AFM1 formation was strongly inhibited by furafylline, whereas AFQ1 formation was strongly inhibited by TAO, in all HLM regardless of substrate concentration. Analysis of R-6- and R-1O-hydroxywarfarin activities (respective markers of CYP1A2 and CYP3A4 activities) in the complementary DNA-expressed microsomes demonstrated that TAO was less effective than furafylline as a selective P450 isoenzyme inhibitor (60% inhibition of CYP3A4 by TAO as compared to 99% inhibition of CYP1A2 by furafylline). The rates of AFB1 epoxidation and AFQ1 formation in HLM were increased 7- and 18-fold, respectively, at high versus low substrate concentrations. These results are consistent with the hypothesis that CYP1A2 is the high-affinity P450 enzyme principally responsible for the bioactivation of AFB1 at low substrate concentrations associated with dietary exposure. CYP3A4 appears to have a relatively low affinity for AFB1 epoxidation and is primarily involved in AFB, detoxification through AFQ1 formation in HLM. The present study also extends the use of the selective CYP1A2 inhibitor furafylline to studies of AFB1 oxidation in human liver microsomes.

Footnotes

  • ↵1 This research was supported in part by NIH Grants ES-05780, ES-03933, ES-04696, GM 47850, and GM 32165. E. P. G. is supported in part by an NIH Postdoctoral Fellowship in Environmental Pathology and Toxicology (T32ES-07032).

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Received August 5, 1993.
  • Accepted November 5, 1993.
  • ©1994 American Association for Cancer Research.
PreviousNext
Back to top
January 1994
Volume 54, Issue 1
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Human Microsomal and Human Complementary DNA-expressed Cytochromes P4501A2 and P4503A4 in the Bioactivation of Aflatoxin B1
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Role of Human Microsomal and Human Complementary DNA-expressed Cytochromes P4501A2 and P4503A4 in the Bioactivation of Aflatoxin B1
E. P. Gallagher, L. C. Wienkers, P. L. Stapleton, K. L. Kunze and D. L. Eaton
Cancer Res January 1 1994 (54) (1) 101-108;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Role of Human Microsomal and Human Complementary DNA-expressed Cytochromes P4501A2 and P4503A4 in the Bioactivation of Aflatoxin B1
E. P. Gallagher, L. C. Wienkers, P. L. Stapleton, K. L. Kunze and D. L. Eaton
Cancer Res January 1 1994 (54) (1) 101-108;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Progression of Hepatic Neoplasms Is Severely Retarded in Mice Lacking the Bisecting N-Acetylglucosamine on N-Glycans: Evidence for a Glycoprotein Factor that Facilitates Hepatic Tumor Progression
  • Explaining Differences in Sensitivity to Killing by Ionizing Radiation between Human Lymphoid Cell Lines
  • p53 Genes Mutated in the DNA Binding Site or at a Specific COOH-terminal Site Exert Divergent Effects on Thyroid Cell Growth and Differentiation
Show more Regular Articles

Carcinogenesis

  • Abstract LB-086: Genes targeted by drugs and curcumin in a breast carcinogenesis model
  • Abstract LB-091: Characterization of molecular changes occurring during long-term treatment of human bronchial epithelial cells with cigarette smoke total particulate matter
  • Abstract LB-088: Ptch1 heterozygosity predisposes mice to developing IR-induced BCCs
Show more Carcinogenesis

Articles

  • Abstract LB-086: Genes targeted by drugs and curcumin in a breast carcinogenesis model
  • Abstract LB-091: Characterization of molecular changes occurring during long-term treatment of human bronchial epithelial cells with cigarette smoke total particulate matter
  • Abstract LB-088: Ptch1 heterozygosity predisposes mice to developing IR-induced BCCs
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement