Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Carcinogenesis

Epidermal Growth Factor Suppresses Insulin-like Growth Factor Binding Protein 3 Levels in Human Papillomavirus Type 16-immortalized Cervical Epithelial Cells and Thereby Potentiates the Effects of Insulin-like Growth Factor 1

Joan R. Hembree, Chapla Agarwal and Richard L. Eckert
Joan R. Hembree
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chapla Agarwal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard L. Eckert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published June 1994
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Human ectocervical epithelial cells are a primary target for infection by oncogenic papillomaviruses, which are strongly implicated as causative agents in the genesis of cervical cancer. Growth factors have been implicated as agents that stimulate proliferation and enhance the possibility of malignant transformation. In the present study we utilize several human papillomavirus (HPV) type 16-immortalized ectocervical epithelial cell lines to investigate the effects of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on cell proliferation and the production of IGF binding proteins (IGFBPs). ECE16-1 cells, an HPV16-immortalized/nontumorigenic cell line, maintained in defined medium, produce and release high levels of IGFBP-3 (38/42 kDa) as well as smaller amounts of a 24-kDa IGFBP. Supplementation of defined medium with EGF causes a dose-dependent increase in cell growth and a concomitant decrease in the levels of IGFBP-3 released into the culture medium. EGF suppression of IGFBP-3 is maintained even when EGF-stimulated cell growth is suppressed 67% due to the simultaneous presence of 3 ng/ml of TGFβ1, indicating that EGF suppression of IGFBP-3 levels is independent of EGF effects on cell growth. EGF suppression of IGFBP-3 production is correlated with a reduction in IGFBP-3 mRNA level. In the presence of EGF, the growth response of the cells to ng amounts of IGF-I is significantly enhanced. Moreover, the simultaneous presence of both EGF and IGF-I reduces the level of IGFBP-3 more efficiently than EGF alone. We also observe that the IGFBP-3 level is decreased and the 24-kDa IGFBP level is increased in HPV16-positive tumorigenic versus nontumorigenic cell lines. This is the first report of EGF acting as a positive regulator of IGF-I action via the IGFBPs. On the basis of these findings, we propose that EGF stimulates ECE16-1 cell growth via a dual-action mechanism by (a) stimulating growth directly via the EGF mitogenic pathway and (b) stimulating growth indirectly by reducing the levels of inhibitory IGFBPs and thereby potentiating the effects of IGF-I. In addition, the observation that more highly transformed cell types produce lower levels of IGFBP-3 and higher levels of 24-kDa IGFBP suggests that tumor cells in more advanced cervical cancers may have an altered response to IGF-I.

Footnotes

  • ↵1 This work was supported by a grant from the American Institute for Cancer Research (R. L. E.) and utilized the facilities of the Skin Diseases Research Center of Northeast Ohio (NIH AR49750).

  • ↵2 Supported as a postdoctoral trainee in the Metabolism Training Program (NIH DK07319).

  • ↵3 To whom requests for reprints should be addressed, at Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106-4970.

  • Received July 9, 1993.
  • Accepted April 15, 1994.
  • ©1994 American Association for Cancer Research.
PreviousNext
Back to top
June 1994
Volume 54, Issue 12
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Epidermal Growth Factor Suppresses Insulin-like Growth Factor Binding Protein 3 Levels in Human Papillomavirus Type 16-immortalized Cervical Epithelial Cells and Thereby Potentiates the Effects of Insulin-like Growth Factor 1
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Epidermal Growth Factor Suppresses Insulin-like Growth Factor Binding Protein 3 Levels in Human Papillomavirus Type 16-immortalized Cervical Epithelial Cells and Thereby Potentiates the Effects of Insulin-like Growth Factor 1
Joan R. Hembree, Chapla Agarwal and Richard L. Eckert
Cancer Res June 15 1994 (54) (12) 3160-3166;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Epidermal Growth Factor Suppresses Insulin-like Growth Factor Binding Protein 3 Levels in Human Papillomavirus Type 16-immortalized Cervical Epithelial Cells and Thereby Potentiates the Effects of Insulin-like Growth Factor 1
Joan R. Hembree, Chapla Agarwal and Richard L. Eckert
Cancer Res June 15 1994 (54) (12) 3160-3166;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Carcinogenesis

  • Abstract LB-091: Characterization of molecular changes occurring during long-term treatment of human bronchial epithelial cells with cigarette smoke total particulate matter
  • Abstract LB-088: Ptch1 heterozygosity predisposes mice to developing IR-induced BCCs
  • Abstract LB-092: Programmed death-ligand 1 is overexpressed in bronchial preneoplastic lesions: can it be a risk indicator
Show more Carcinogenesis

Articles

  • Laureate Citations
  • Role of TCL1 and ALL1 in Human Leukemias and Development
  • The Partial Homeodomain of the Transcription Factor Pax-5 (BSAP) Is an Interaction Motif for the Retinoblastoma and TATA-binding Proteins
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement