Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Mechanism of Action of the Antileukemic Xanthone Psorospermin: DNA Strand Breaks, Abasic Sites, and Protein-DNA Cross-Links

Paskasari A. Permana, David K. Ho, John M. Cassady and Robert M. Snapka
Paskasari A. Permana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David K. Ho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John M. Cassady
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert M. Snapka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published June 1994
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Psorospermin, a cytotoxic dihydrofuranoxanthone isolated from Psorospermum febrifugum, produced aberrant simian virus 40 DNA replication intermediates when added to lytically infected CV-1 monkey kidney cells. The aberrant viral intermediates showed dose-dependent DNA strand breaks and protein-DNA cross-links, as well as decreased electrophoretic mobility. Simian virus 40 DNA from psorospermin-treated cells was shown to contain numerous abasic (apyrimidinic/apurinic) sites. The density of abasic sites was a function of the psorospermin dose. We conclude that psorospermin causes extensive loss of DNA bases in vivo. Primary amine groups of cellular proteins are known to react with abasic sites to form covalent protein-DNA cross-links and DNA strand breaks. Cytochrome c cross-linked spontaneously to viral DNA prepared from psorospermin-treated cells but not to DNA from untreated cells. This suggests that the protein-DNA cross-links and many of the DNA strand breaks observed in vivo result from reactions between abasic sites and chromosomal proteins. It is likely that the protein-DNA cross-links and DNA strand breaks contribute to the cytotoxicity and antineoplastic activity of psorospermin.

Footnotes

  • ↵1 This work supported by USPHS grants CA-45208 to R. S., CA33326 to J. M. C., and P30-CA16058-6A1 to the Ohio State University Comprehensive Cancer Center.

  • ↵4 To whom requests for reprints should be addressed, at Ohio State University, Dept. of Radiology, 103 Wiseman Hall, 400 West 12th Avenue, Columbus, OH 43210-1214.

  • Received September 16, 1993.
  • Accepted April 19, 1994.
  • ©1994 American Association for Cancer Research.
PreviousNext
Back to top
June 1994
Volume 54, Issue 12
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanism of Action of the Antileukemic Xanthone Psorospermin: DNA Strand Breaks, Abasic Sites, and Protein-DNA Cross-Links
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mechanism of Action of the Antileukemic Xanthone Psorospermin: DNA Strand Breaks, Abasic Sites, and Protein-DNA Cross-Links
Paskasari A. Permana, David K. Ho, John M. Cassady and Robert M. Snapka
Cancer Res June 15 1994 (54) (12) 3191-3195;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Mechanism of Action of the Antileukemic Xanthone Psorospermin: DNA Strand Breaks, Abasic Sites, and Protein-DNA Cross-Links
Paskasari A. Permana, David K. Ho, John M. Cassady and Robert M. Snapka
Cancer Res June 15 1994 (54) (12) 3191-3195;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
Show more Experimental Therapeutics

Articles

  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Intersections between Blood Cell Development and Leukemia Genes
  • Introduction of H. Robert Horvitz
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement