Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Paclitaxel Inhibits Progression of Mitotic Cells to G1 Phase by Interference with Spindle Formation without Affecting Other Microtubule Functions during Anaphase and Telephase

Byron H. Long and Craig R. Fairchild
Byron H. Long
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig R. Fairchild
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published August 1994
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Very low concentrations of paclitaxel, a clinically active anticancer agent isolated from the bark of the Pacific yew tree, were found to produce micronuclei in human colon carcinoma cells, suggesting inhibition of mitotic spindle assembly or function. The possibility that paclitaxel acts at the level of the mitotic spindle was investigated by evaluating its ability to inhibit the progression of mitotic cells to G1 phase. Paclitaxel inhibited mitotic progression with a median inhibitory concentration of 4 nm, a concentration equivalent to the median cytotoxic concentration, without arresting cells in mitosis. A direct correlation was shown to exist between the cytotoxic potency and ability to inhibit mitotic progression for analogues of paclitaxel and antimicrotubule agents but not for the topoisomerase II-active agents etoposide and teniposide. After release from the nocodazole block, cells synchronized in mitosis remained sensitive to very low concentrations of paclitaxel for <30 min, the time required for spindle formation, yet remained sensitive to vinblastine for >90 min. This result indicates that very low concentrations of paclitaxel inhibit formation of mitotic spindles in cells without affecting function of preformed spindles and without arresting cells in mitosis. Continuous exposure to low nanomolar concentrations of paclitaxel for more than one cell cycle resulted in cells with DNA contents >4C and as much as 8C. These results support a hypothesis that, by not being capable of segregating sister chromatids, paclitaxel-treated cells eventually reform nuclear membranes around individual or clusters of chromosomes, revert to G1 phase cells containing 4C DNA, and enter S phase, resulting in cells with as much as 8C DNA content. It is proposed that this is the primary cytotoxic mechanism of paclitaxel.

Footnotes

  • ↵1 To whom requests for reprints should be addressed, at Department of Experimental Therapeutics (K.2114E), Bristol-Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000.

  • Received July 30, 1993.
  • Accepted June 17, 1994.
  • ©1994 American Association for Cancer Research.
PreviousNext
Back to top
August 1994
Volume 54, Issue 16
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Paclitaxel Inhibits Progression of Mitotic Cells to G1 Phase by Interference with Spindle Formation without Affecting Other Microtubule Functions during Anaphase and Telephase
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Paclitaxel Inhibits Progression of Mitotic Cells to G1 Phase by Interference with Spindle Formation without Affecting Other Microtubule Functions during Anaphase and Telephase
Byron H. Long and Craig R. Fairchild
Cancer Res August 15 1994 (54) (16) 4355-4361;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Paclitaxel Inhibits Progression of Mitotic Cells to G1 Phase by Interference with Spindle Formation without Affecting Other Microtubule Functions during Anaphase and Telephase
Byron H. Long and Craig R. Fairchild
Cancer Res August 15 1994 (54) (16) 4355-4361;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
Show more Experimental Therapeutics

Articles

  • Membership of Awards Assembly
  • Id Gene Expression as a Key Mediator of Tumor Cell Biology
  • Radiation Biology and Treatment Options in Radiation Oncology
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement