Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

Pharmacological Characterization of Multidrug Resistant MRP-transfected Human Tumor Cells

Susan P. C. Cole, Kathryn E. Sparks, Karen Fraser, Douglas W. Loe, Caroline E. Grant, Gerald M. Wilson and Roger G. Deeley
Susan P. C. Cole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathryn E. Sparks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karen Fraser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas W. Loe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline E. Grant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerald M. Wilson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger G. Deeley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1994
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We have previously identified and characterized a novel member of the ATP-binding cassette superfamily of transport proteins, multidrug resistance protein (MRP), and subsequently demonstrated that its overexpression is sufficient to confer multidrug resistance on previously sensitive cells (Cole et al., Science (Washington DC), 258: 1650–1654, 1992; Grant et al., Cancer Res. 54: 357–361, 1994). In the present study, we have transfected two different eukaryotic expression vectors containing MRP complementary DNA into HeLa cells to study the pharmacological phenotype produced exclusively by overexpression of human MRP. The drug resistance patterns of the two MRP-transfected cell populations were similar. They were characterized by a moderate (5- to 15-fold) level of resistance to doxorubicin, daunorubicin, epirubicin, vincristine, and etoposide, and a low (≤3-fold) level of resistance to taxol, vinblastine, and colchicine. The transfectants were not resistant to 9-alkyl anthracyclines, mitoxantrone, or cisplatin. The MRP-transfected cells were also resistant to some heavy metal anions including arsenite, arsenate, and trivalent and pentavalent antimonials but were not resistant to cadmium chloride. Accumulation of radiolabeled vincristine was reduced by 45% in the MRP-transfected cells and could be restored to the levels found in sensitive cells by depletion of ATP. Rates of vincristine efflux did not differ greatly in the sensitive and resistant cells. The cytotoxic effects of vincristine and doxorubicin could be enhanced in a dose-dependent fashion by coadministration of verapamil. Cyclosporin A also increased vincristine toxicity but had less effect on doxorubicin toxicity. The degree of chemosensitization by verapamil and cyclosporin A was similar in MRP-transfected cells and in cells transfected with the vector alone, suggesting that sensitization involved mechanisms independent of MRP expression. Verapamil and cyclosporin A caused a modest increase in vincristine accumulation in the resistant cells but did not restore levels to those of the sensitive cells. Taken together, these data indicate that drug-resistant cell lines generated by transfection with MRP complementary DNA display some but not all of the characteristics of MRP-overexpressing cell lines produced by drug selection in vitro. They further demonstrate that the multidrug resistance phenotype conferred by MRP is similar but not identical to that conferred by P-glycoprotein and includes resistance to arsenical and antimonial oxyanions.

Footnotes

  • ↵1 Supported by grants from the Medical Research Council of Canada (to S. P. C. C. and R. G. D.) and the National Cancer Institute of Canada with funds from the Canadian Cancer Society (to S. P. C. C.). S. P. C. C. is a Career Scientist of the Ontario Cancer Foundation. R. G. D. is the Stauffer Research Professor of Queen's University.

  • ↵2 To whom requests for reprints should be addressed, at Cancer Research Laboratories, Queen's University, Third Floor, Botterell Hall, Kingston, Ontario, Canada K7L 3N6.

  • Received June 21, 1994.
  • Accepted September 19, 1994.
  • ©1994 American Association for Cancer Research.
PreviousNext
Back to top
November 1994
Volume 54, Issue 22
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological Characterization of Multidrug Resistant MRP-transfected Human Tumor Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Pharmacological Characterization of Multidrug Resistant MRP-transfected Human Tumor Cells
Susan P. C. Cole, Kathryn E. Sparks, Karen Fraser, Douglas W. Loe, Caroline E. Grant, Gerald M. Wilson and Roger G. Deeley
Cancer Res November 15 1994 (54) (22) 5902-5910;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Pharmacological Characterization of Multidrug Resistant MRP-transfected Human Tumor Cells
Susan P. C. Cole, Kathryn E. Sparks, Karen Fraser, Douglas W. Loe, Caroline E. Grant, Gerald M. Wilson and Roger G. Deeley
Cancer Res November 15 1994 (54) (22) 5902-5910;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Phase I Trial of Intraperitoneal Iododeoxyuridine with and without Intravenous High-Dose Folinic Acid in the Treatment of Advanced Malignancies Primarily Confined to the Peritoneal Cavity: Flow Cytometric and Pharmacokinetic Analysis
  • Mitochondrial Membrane Potential (ΔΨmt) in the Coordination of p53-independent Proliferation and Apoptosis Pathways in Human Colonic Carcinoma Cells
  • Death of Tumor Cells after Intracellular Acidification Is Dependent on Stress-activated Protein Kinases (SAPK/JNK) Pathway Activation and Cannot Be Inhibited by Bcl-2 Expression or Interleukin 1β-converting Enzyme Inhibition
Show more Regular Articles

Experimental Therapeutics

  • Novel Mechanisms of Apoptosis Induced by Histone Deacetylase Inhibitors
  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
Show more Experimental Therapeutics

Articles

  • Novel Mechanisms of Apoptosis Induced by Histone Deacetylase Inhibitors
  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement