Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tumor Biology

Nerve Growth Factor Stimulates Clonal Growth of Human Lung Cancer Cell Lines and a Human Glioblastoma Cell Line Expressing High-Affinity Nerve Growth Factor Binding Sites Involving Tyrosine Kinase Signaling

Elisabeth Oelmann, Lydia Sreter, Irmela Schuller, Hubert Serve, Michael Koenigsmann, Bertram Wiedenmann, Dorothea Oberberg, Birgit Reufi, Eckhard Thiel and Wolfgang E. Berdel
Elisabeth Oelmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lydia Sreter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irmela Schuller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hubert Serve
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Koenigsmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bertram Wiedenmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dorothea Oberberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Birgit Reufi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eckhard Thiel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolfgang E. Berdel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published May 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The growth of a panel of 22 different human tumor, leukemia, and lymphoma cell lines was examined in a human tumor cloning assay in agar or methylcellulose and a tritiated thymidine uptake assay. The cultures were performed in the absence or presence of increasing concentrations (0.5–500 ng/ml) of nerve growth factor (NGF). The growth of 17 of the 22 cell lines was not significantly and reproducibly affected by NGF. There was minor (1.2-fold) but reproducible stimulation of clonal growth in one glioblastoma cell line (86-HG-39) by NGF, but in this cell line NGF induced no growth modulation in a tritiated thymidine uptake assay. However, clonal growth of another glioblastoma cell line (87-HG-31) and all three lung cancer cell lines tested (HTB 119, HTB 120, CCL 185) could be stimulated up to 3-fold by NGF with a dose-response relationship for the growth factor. Growth stimulation by NGF could be completely reversed by neutralizing anti-NGF antibody and by the tyrosine kinase inhibitor genistein. Evaluation of secondary plating efficiency revealed the stimulation of colony formation as representing self-renewal and not terminal differentiation. Reverse transcriptase-PCR experiments in the five responding cell lines showed expression of both low-affinity NGF receptor (glycoprotein 75) and c-trk transcripts on the mRNA level. Of the five responding cell lines, only 86-HG-39, the cell line with the lowest responsiveness, revealed low-affinity NGF receptor on the protein level; the other four cell lines with high responsiveness, including the three lung cancer cell lines, expressed no low-affinity NGF receptor as shown by fluorescence-activated cell sorter analysis and immunoprecipitation using the ME 20.4 antibody. Immunoprecipitation using anti-trk antibodies was negative in all five responding cell lines. However, binding studies with iodinated NGF showed only low-affinity binding on the 86-HG-39 cell line and only high-affinity binding on the high-responder cell lines CCL 185 and 87-HG-31. In summary, our data suggest that NGF can be operative in stimulation of clonal growth of malignant tumor cells. High-affinity but not low-affinity binding sites mediate signal transduction for clonal growth and signaling involves tyrosine kinase activity.

Footnotes

  • ↵1 This work was supported by Grant DFG Be 822/4-3 from the Deutsche Forschungsgemeinschaft.

  • ↵2 To whom requests for reprints should be addressed.

  • Received April 1, 1993.
  • Accepted March 14, 1995.
  • ©1995 American Association for Cancer Research.
PreviousNext
Back to top
May 1995
Volume 55, Issue 10
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nerve Growth Factor Stimulates Clonal Growth of Human Lung Cancer Cell Lines and a Human Glioblastoma Cell Line Expressing High-Affinity Nerve Growth Factor Binding Sites Involving Tyrosine Kinase Signaling
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Nerve Growth Factor Stimulates Clonal Growth of Human Lung Cancer Cell Lines and a Human Glioblastoma Cell Line Expressing High-Affinity Nerve Growth Factor Binding Sites Involving Tyrosine Kinase Signaling
Elisabeth Oelmann, Lydia Sreter, Irmela Schuller, Hubert Serve, Michael Koenigsmann, Bertram Wiedenmann, Dorothea Oberberg, Birgit Reufi, Eckhard Thiel and Wolfgang E. Berdel
Cancer Res May 15 1995 (55) (10) 2212-2219;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Nerve Growth Factor Stimulates Clonal Growth of Human Lung Cancer Cell Lines and a Human Glioblastoma Cell Line Expressing High-Affinity Nerve Growth Factor Binding Sites Involving Tyrosine Kinase Signaling
Elisabeth Oelmann, Lydia Sreter, Irmela Schuller, Hubert Serve, Michael Koenigsmann, Bertram Wiedenmann, Dorothea Oberberg, Birgit Reufi, Eckhard Thiel and Wolfgang E. Berdel
Cancer Res May 15 1995 (55) (10) 2212-2219;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tumor Biology

  • Abstract 6119: RNAi rat models for drug discovery
  • Abstract 3834: Histone methyltransferase SET8 is regulated by miR-192/-215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells
  • Abstract 3788: CircHMGCS1 interacts with RNA binding protein HuR and maintains stem-like cells in gliomas
Show more Tumor Biology

Articles

  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • Membership of Advisory Council
  • The Prizes
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement