Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Expression of Manganese Superoxide Dismutase Reduces Tumor Control Radiation Dose: Gene-Radiotherapy

Muneyasu Urano, Masahiro Kuroda, Regina Reynolds, Terry D. Oberley and Daret K. St. Clair
Muneyasu Urano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahiro Kuroda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Regina Reynolds
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry D. Oberley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daret K. St. Clair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published June 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

This study investigated the in vitro and in vivo radiation response of tumor cells transfected with human manganese superoxide dismutase (MnSOD) cDNA. A major objective was to test the potential tumor suppressive effect of MnSOD in vivo. Tumor cells studied were an in vitro line derived from a murine spontaneous fibrosarcoma, FSa-II, which expressed an undetectable MnSOD activity. These cells were transfected with pSV2-NEO plasmid (NEO line) or cotransfected with MnSOD plasmid plus pSV2-NEO plasmid (SOD lines) as described previously. The cell lines used were SOD-L and SOD-H, which expressed, respectively, low and high MnSOD activities after transfection, and NEO and parental FSa-II controls. Both SOD-L and SOD-H cell lines were slightly more resistant to ionizing radiation than were the two control cell lines when irradiated in vitro in the presence of oxygen. The dose-modifying factors calculated at the survival level of 0.01 were 1.13 and 1.15 for the SOD-L and SOD-H cells, respectively. To investigate potential tumor suppressive effects, animal tumors of 4 mm diameter were irradiated in vivo under hypoxic conditions, and the radiation dose to control one-half of the irradiated tumors (TCD50) was determined for each tumor. The TCD50S obtained on the basis of the tumor control rate in 120 days after irradiation were substantially lower for the SOD-H and SOD-L tumors compared to the N tumors. They were 22.9, 28.6, and 47.5 Gy for SOD-H, SOD-L and NEO tumors, respectively. To analyze these data, survival curves were obtained for hypoxic cells by irradiating NEO and SOD-H tumors under hypoxic conditions in vivo and assaying in vitro. Analysis of these curves suggests that the decrease in the TCD50S of SOD tumors is attributable to the reduced tumorigenicity in these tumors. The hypoxic cell survival curves also showed that SOD did not protect cells from radiation in the absence of oxygen. Electron microscopy showed no morphological differences between these cells. These results suggest that the fraction of tumorigenic cells could be reduced by expression of MnSOD, resulting in a substantial decrease in the TCD50.

Footnotes

  • ↵1 This study was supported in part by American Cancer Society Grant EDT82-A, NIH Grant CA49797, Kentucky Tobacco Research Board Grant 5-41113, and a gene therapy grant from the University of Kentucky L. P. Markey Cancer Center (supported by the Ephraim McDowell Cancer Foundation).

  • ↵3 To whom requests for reprints should be addressed, at Graduate Center for Toxicology, University of Kentucky, 204 Funkhouser Building, Lexington, KY 40506-0054.

  • Received March 24, 1995.
  • Accepted May 5, 1995.
  • ©1995 American Association for Cancer Research.
PreviousNext
Back to top
June 1995
Volume 55, Issue 12
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression of Manganese Superoxide Dismutase Reduces Tumor Control Radiation Dose: Gene-Radiotherapy
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Expression of Manganese Superoxide Dismutase Reduces Tumor Control Radiation Dose: Gene-Radiotherapy
Muneyasu Urano, Masahiro Kuroda, Regina Reynolds, Terry D. Oberley and Daret K. St. Clair
Cancer Res June 15 1995 (55) (12) 2490-2493;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Expression of Manganese Superoxide Dismutase Reduces Tumor Control Radiation Dose: Gene-Radiotherapy
Muneyasu Urano, Masahiro Kuroda, Regina Reynolds, Terry D. Oberley and Daret K. St. Clair
Cancer Res June 15 1995 (55) (12) 2490-2493;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • Recombinant Listeria Vaccines Containing PEST Sequences Are Potent Immune Adjuvants for the Tumor-Associated Antigen Human Papillomavirus-16 E7
  • 2-Arachidonoylglycerol
  • Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-2 Fusion cDNA for Cancer Gene Immunotherapy
Show more Advances in Brief

Articles

  • Mammary Gland Development, Reproductive History, and Breast Cancer Risk
  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement