Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

5-Ethoxy-2′-deoxyuridine, a Novel Substrate for Thymidine Phosphorylase, Potentiates the Antitumor Activity of 5-Fluorouracil When Used in Combination with Interferon, an Inducer of Thymidine Phosphorylase Expression

Edward L. Schwartz, Nicole Baptiste, Sreenivasalu Megati, Scott Wadler and Brian A. Otter
Edward L. Schwartz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicole Baptiste
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sreenivasalu Megati
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott Wadler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian A. Otter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published August 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Clinical studies have demonstrated that the combination of 5-fluorouracil (FUra) and IFN-α has activity in the treatment of advanced colorectal cancer. Treatment of human colon carcinoma cells with IFN caused a 5-fold increase in the level of thymidine phosphorylase (TP) mRNA and an 8-fold increase in TP enzyme activity. Since TP catalyzes the first step in the direct conversion of FUra to deoxyribonucleotides, its induction by IFN is a potential biochemical mechanism for the modulation of the antitumor activity of FUra. In contrast to the activity measured in cell extracts, however, thymine utilization by intact cells was increased less than 2-fold by IFN, suggesting that the metabolic activation of FUra by TP in the IFN-treated cells was similarly suboptimal. This was likely due to a rate-limiting amount of cosubstrate for TP, and in this study, a series of 5-substituted 2′-deoxyuridine analogues were synthesized and tested as potential deoxyribose donors for TP. One of the compounds, the novel pyrimidine analogue 5-ethoxy-2′-deoxyuridine (EOdU), was found to be a substrate for the transferase reaction of TP, to have little or no direct cytotoxicity, to selectively increase the cellular levels of 5-fluoro-dUMP, to enhance the inhibitory effect of FUra on thymidylate synthase activity, and to potentiate the cytotoxicity of FUra and IFN in human colon carcinoma cells. EOdU was tested in vivo against HT-29 cells grown as xenografts in nude mice. The combination of EOdU + FUra + IFN-α2a produced tumor regressions and a significantly greater delay in tumor growth when compared to FUra + IFN-α2a, FUra + EOdU, or FUra or IFN used alone; tumors were 72% smaller in the EOdU + FUra + IFN-α2a-treated animals compared to the saline control group. A comparable antitumor effect was also found when a related nucleoside analogue, 5-propynyloxy-2′-deoxyuridine, was used with FUra + IFN, and it also showed modulating activity when used with only FUra. The antitumor activity of the three agent combination (nucleoside + IFN + FUra) was comparable to that of a higher dose of FUra used alone, but it was substantially less toxic to the animals than the higher dose of FUra, indicating that the modulating agents improved the therapeutic index of FUra. The substitution of a hybrid recombinant IFN-αA/D, active in both human and murine tissues, in place of the species-specific human IFN-α2a did not further increase the efficacy of the combination, suggesting that a direct effect on the tumor cells rather than host-mediated actions of IFN was the predominant mechanism for antitumor effects observed in vivo. These studies demonstrate a potential novel approach to increase the efficacy and selectivity of FUra, which incorporates two complementary biochemical actions: the selective induction by IFN of expression of a gene regulating pyrimidine synthesis, coupled with the rational design of a cosubstrate for the induced enzyme.

Footnotes

  • ↵1 This publication was supported by Grants CA54422 and CA54272 and Cancer Center Support Grant CA13330 from the National Cancer Institute. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute.

  • ↵2 To whom requests for reprints should be addressed, at Department of Oncology, Albert Einstein Cancer Center, 111 East 210th Street, Bronx, NY 10467.

  • Received February 3, 1995.
  • Accepted June 12, 1995.
  • ©1995 American Association for Cancer Research.
PreviousNext
Back to top
August 1995
Volume 55, Issue 16
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
5-Ethoxy-2′-deoxyuridine, a Novel Substrate for Thymidine Phosphorylase, Potentiates the Antitumor Activity of 5-Fluorouracil When Used in Combination with Interferon, an Inducer of Thymidine Phosphorylase Expression
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
5-Ethoxy-2′-deoxyuridine, a Novel Substrate for Thymidine Phosphorylase, Potentiates the Antitumor Activity of 5-Fluorouracil When Used in Combination with Interferon, an Inducer of Thymidine Phosphorylase Expression
Edward L. Schwartz, Nicole Baptiste, Sreenivasalu Megati, Scott Wadler and Brian A. Otter
Cancer Res August 15 1995 (55) (16) 3543-3550;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
5-Ethoxy-2′-deoxyuridine, a Novel Substrate for Thymidine Phosphorylase, Potentiates the Antitumor Activity of 5-Fluorouracil When Used in Combination with Interferon, an Inducer of Thymidine Phosphorylase Expression
Edward L. Schwartz, Nicole Baptiste, Sreenivasalu Megati, Scott Wadler and Brian A. Otter
Cancer Res August 15 1995 (55) (16) 3543-3550;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
  • All-trans-Retinoic Acid Eliminates Immature Myeloid Cells from Tumor-bearing Mice and Improves the Effect of Vaccination
Show more Experimental Therapeutics

Articles

  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • Introduction of H. Robert Horvitz
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement