Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Detection of CDKN2 Deletions in Tumor Cell Lines and Primary Glioma by Interphase Fluorescence in Situ Hybridization

M. H. Dreyling, S. K. Bohlander, M. O. Adeyanju and O. I. Olopade
M. H. Dreyling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. K. Bohlander
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. O. Adeyanju
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O. I. Olopade
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published March 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Deletions of chromosomal band 9p21 have been detected in various tumor types including melanoma, glioma, lung cancer, mesothelioma, and bladder cancer. Recently, the CDKN2 gene (p16INK4A, MTS 1, CDK41) has been proposed as a candidate tumor suppressor gene because it is frequently deleted in cell lines derived from multiple tumor types. We performed fluorescence in situ hybridization (FISH) with interphase cells using yeast artificial chromosome clones and a cosmid contig of the CDKN2 region. In 10 cell lines (4 glioma, 2 melanoma, 2 non-small cell lung cancer, 2 bladder cancer) with 9p alterations detected by molecular or cytogenetic analysis, interphase FISH with the CDKN2 cosmid contig detected all 9p deletions previously identified by molecular analysis. Using this probe, FISH analysis of primary glioblastoma tumors revealed homozygous deletions of the CDKN2 region in 6 of 9 tumors (67%) whereas a yeast artificial chromosome probe containing the interferon type I (IFN) gene cluster was deleted in only 4 cases (44%). Thus, it is likely that the CDKN2 region is the target of 9p deletions in gliomas. Interphase FISH will play an important role in defining the clinical significance of 9p deletions in primary tumors because it is especially applicable to clinical samples which may be contaminated by normal cells.

Footnotes

  • ↵1 The work was supported in part by J. S. McDonnell Foundation Grant 92-51 (O. I. O.), DOE Grant DE-FG02-86ER60408 (J. D. Rowley), and a training grant from the Deutsche Forschungsgemeinschaft (M. H. D.).

  • ↵2 To whom requests for reprints should be addressed, at the Department of Medicine, Section of Hematology/Oncology, University of Chicago, 5841 S. Maryland, Box 2115, Chicago, IL 60637.

  • Received January 3, 1995.
  • Accepted January 24, 1995.
  • ©1995 American Association for Cancer Research.
PreviousNext
Back to top
March 1995
Volume 55, Issue 5
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Detection of CDKN2 Deletions in Tumor Cell Lines and Primary Glioma by Interphase Fluorescence in Situ Hybridization
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Detection of CDKN2 Deletions in Tumor Cell Lines and Primary Glioma by Interphase Fluorescence in Situ Hybridization
M. H. Dreyling, S. K. Bohlander, M. O. Adeyanju and O. I. Olopade
Cancer Res March 1 1995 (55) (5) 984-988;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Detection of CDKN2 Deletions in Tumor Cell Lines and Primary Glioma by Interphase Fluorescence in Situ Hybridization
M. H. Dreyling, S. K. Bohlander, M. O. Adeyanju and O. I. Olopade
Cancer Res March 1 1995 (55) (5) 984-988;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • NIMA-Related Protein Kinase 1 Is Involved Early in the Ionizing Radiation-Induced DNA Damage Response
  • 2-Arachidonoylglycerol
  • Conditional Expression of K-ras in an Epithelial Compartment that Includes the Stem Cells Is Sufficient to Promote Squamous Cell Carcinogenesis
Show more Advances in Brief

Articles

  • Membership of Awards Assembly
  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • The Prizes
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement