Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Molecular Biology and Genetics

A Soluble Insulin-like Growth Factor I Receptor That Induces Apoptosis of Tumor Cells in Vivo and Inhibits Tumorigenesis

Consuelo D'Ambrosio, Andres Ferber, Mariana Resnicoff and Renato Baserga
Consuelo D'Ambrosio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andres Ferber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mariana Resnicoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Renato Baserga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

By a frame-shift mutation, we have engineered a human IGF-I receptor (IGF-IR) cDNA that produces a receptor 486 amino acids long (plus the 30 amino acids of the signal peptide). This receptor, which we have designated as 486/STOP, is partially secreted into the medium of cells in culture and markedly inhibits the autophosphorylation of the endogenous IGF-IRs as well as the activation of the signaling pathway. The 486/STOP receptor acts as a strong dominant negative for several growth functions: (a) it inhibits the growth of cells in monolayers; (b) it inhibits the growth of transformed cells in soft agar; (c) it induces extensive apoptosis in vivo; and (d) it inhibits tumorigenesis in syngeneic rats. This is the first demonstration that a dominant negative of the IGF-IR can induce massive apoptosis of tumor cells in vivo.

Footnotes

  • ↵1 Supported by Grants CA 53484 and GM 33694 from the NIH.

  • ↵2 To whom requests for reprints should be addressed, at Kimmel Cancer Center. Thomas Jefferson University, 624 Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA 19107. Phone: (215) 503-4507; Fax: (215) 923-0249; E-mail: Basergal@jeflin.tju.edu.

  • Received March 14, 1996.
  • Accepted June 28, 1996.
  • ©1996 American Association for Cancer Research.
PreviousNext
Back to top
September 1996
Volume 56, Issue 17
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Soluble Insulin-like Growth Factor I Receptor That Induces Apoptosis of Tumor Cells in Vivo and Inhibits Tumorigenesis
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Soluble Insulin-like Growth Factor I Receptor That Induces Apoptosis of Tumor Cells in Vivo and Inhibits Tumorigenesis
Consuelo D'Ambrosio, Andres Ferber, Mariana Resnicoff and Renato Baserga
Cancer Res September 1 1996 (56) (17) 4013-4020;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Soluble Insulin-like Growth Factor I Receptor That Induces Apoptosis of Tumor Cells in Vivo and Inhibits Tumorigenesis
Consuelo D'Ambrosio, Andres Ferber, Mariana Resnicoff and Renato Baserga
Cancer Res September 1 1996 (56) (17) 4013-4020;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Molecular Biology and Genetics

  • Susceptibility to Aflatoxin B1-related Primary Hepatocellular Carcinoma in Mice and Humans
  • Identification of 5-fluorouracil-inducible Target Genes Using cDNA Microarray Profiling
  • Genome-wide Analysis of Gene Expression Associated with MYCN in Human Neuroblastoma
Show more Molecular Biology and Genetics

Articles

  • Laureates
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • The Role of Chimeric Paired Box Transcription Factors in the Pathogenesis of Pediatric Rhabdomyosarcoma
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement