Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Hypermethylation-associated Inactivation Indicates a Tumor Suppressor Role for p15INK4B

James G. Herman, Jin Jen, Adrian Merlo and Stephen B. Baylin
James G. Herman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jin Jen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adrian Merlo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen B. Baylin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The recently identified cyclin-dependent kinase inhibitor p15INK4B is localized to a region on chromosome 9p21 frequently deleted in human tumors. Previous evidence has pointed to a related gene, p16INK4A, as the principal target of this deletion. We report that in gliomas and, to a striking degree, in leukemias, the p15 gene is commonly inactivated in association with promoter region hypermethylation involving multiple sites in a 5′-CpG island. In some gliomas and all of the primary leukemias, this event occurs without alteration of the adjacent gene, p16INK4A. In other tumors, including lung, head and neck, breast, prostate, and colon cancer, inactivation of p16INK4B occurs only rarely and only with concomitant inactivation of p16. Aberrant methylation of p15INK4B is associated with transcriptional loss of this gene. Treatment with the demethylating agent 5-aza-2′-deoxycytidine leads to re-expression of p15 mRNA. In selected leukemia cell lines, p15 inactivation correlates with known resistance to the growth-suppressive effects of transforming growth factor-β. These results suggest that p15INK4B is inactivated selectively in leukemias and gliomas and seems to constitute an important tumor suppressor gene loss in these neoplasms.

Footnotes

  • ↵1 This work was supported by NIH Grants CA-43318 and CA-58184. A. M. is a recipient of a Schweizensche Stiftung fur Medizinish-Biologische stipend.

  • ↵2 To whom requests for reprints should be addressed, at The Oncology Center, The Johns Hopkins University School of Medicine, 424 North Bond Street, Baltimore, MD 21231.

  • Received November 28, 1995.
  • Accepted December 29, 1995.
  • ©1996 American Association for Cancer Research.
PreviousNext
Back to top
February 1996
Volume 56, Issue 4
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hypermethylation-associated Inactivation Indicates a Tumor Suppressor Role for p15INK4B
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Hypermethylation-associated Inactivation Indicates a Tumor Suppressor Role for p15INK4B
James G. Herman, Jin Jen, Adrian Merlo and Stephen B. Baylin
Cancer Res February 15 1996 (56) (4) 722-727;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Hypermethylation-associated Inactivation Indicates a Tumor Suppressor Role for p15INK4B
James G. Herman, Jin Jen, Adrian Merlo and Stephen B. Baylin
Cancer Res February 15 1996 (56) (4) 722-727;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • Down-Regulation of Regulatory Subunit Type 1A of Protein Kinase A Leads to Endocrine and Other Tumors
  • Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia
  • Recombinant Listeria Vaccines Containing PEST Sequences Are Potent Immune Adjuvants for the Tumor-Associated Antigen Human Papillomavirus-16 E7
Show more Advances in Brief

Articles

  • Laureate Citations
  • Role of TCL1 and ALL1 in Human Leukemias and Development
  • The Partial Homeodomain of the Transcription Factor Pax-5 (BSAP) Is an Interaction Motif for the Retinoblastoma and TATA-binding Proteins
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement