Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tumor Biology

erbB Family Receptor Expression and Growth Regulation in a Newly Isolated Human Breast Cancer Cell Line

Stephen P. Ethier, Kristine E. Kokeny, Jane W. Ridings and Cheryl A. Dilts
Stephen P. Ethier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristine E. Kokeny
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jane W. Ridings
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cheryl A. Dilts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A new human breast cancer cell line (SUM-52PE), originating from a malignant pleural effusion specimen, that can be cultured under serum-free conditions has been isolated. Experiments were conducted to examine the relationship between expression of the erbB family of growth factor receptors and growth regulation in these cells. SUM-52PE cells are epidermal growth factor receptor negative but express single copy levels of erbB-2 protein. Southern blot analysis indicates that the erbB-2 gene is not amplified in these cells. The cells also express mRNA for both erbB-3 and erbB-4. Phosphotyrosine Western blot analysis of membrane protein obtained from SUM-52PE cells indicates the presence of a constitutively tyrosine phosphorylated Mr 185,000 protein. Immunoprecipitation, using antibodies to erbB-2 or erbB-3, coupled to phosphotyrosine Western blot analysis indicates that both erbB-2 and erbB-3 are constitutively tyrosine phosphorylated in proliferating SUM-52PE cells. Conditioned medium obtained from SUM-52PE cells does not induce tyrosine phosphorylation of p185erbB-2 in a sensitive indicator cell line, suggesting that an erbB-2 activating factor is not secreted by these cells. However, neu differentiation factor/heregulin (NDF/HRG) mRNA is expressed by the cells, and Western blot analysis of SUM-52PE membrane protein revealed the presence of a Mr 90,000 immunoreactive NDF/HRG protein. Thus, SUM-52PE cells synthesize a membrane bound form of NDF/HRG that may activate erbB-2 and erbB-3 via a juxtacrine mechanism. The addition of exogenous β-2-NDF/HRG to the culture medium of SUM-52PE cells yields enhanced tyrosine phosphorylation of p185erbB-2/erbB-3 but has only a small stimulatory effect on the proliferation of these cells. By contrast, an erbB-2 monoclonal antibody that binds to the extracellular domain of erbB-2 is potently mitogenic for these cells. SUM-52PE cells were also found, by phosphotyrosine Western blot analysis, to express an inordinately large number of tyrosine phosphoproteins. Direct measurement of phosphotyrosine phosphatase (PTPase) activity in SUM-52PE cell membrane protein revealed 2-3-fold lower levels of PTPase activity compared to other normal and neoplastic breast epithelial cell lines. Thus, SUM-52PE cells exhibit altered growth phenotypes not identified previously in human breast cancer cells. The constitutive activation of erbB-2 and erbB-3 in these cells, coupled with their low, membrane-associated, PT-Pase activity are likely to play direct roles in driving proliferation of these breast cancer cells.

Footnotes

  • ↵1 This work was supported by Grant CA40064 from the National Cancer Institute, and support for K. E. K. and J. W. R. was from American Cancer Society Grant 94-85-1.

  • ↵2 To whom requests for reprints should be addressed, at Department of Radiation Oncology, The University of Michigan Medical School, 1331 East Ann Street, Ann Arbor, MI 48109-0582. Phone: (313) 747-1008; Fax: (313) 763-1581.

  • Received August 15, 1995.
  • Accepted December 15, 1995.
  • ©1996 American Association for Cancer Research.
PreviousNext
Back to top
February 1996
Volume 56, Issue 4
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
erbB Family Receptor Expression and Growth Regulation in a Newly Isolated Human Breast Cancer Cell Line
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
erbB Family Receptor Expression and Growth Regulation in a Newly Isolated Human Breast Cancer Cell Line
Stephen P. Ethier, Kristine E. Kokeny, Jane W. Ridings and Cheryl A. Dilts
Cancer Res February 15 1996 (56) (4) 899-907;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
erbB Family Receptor Expression and Growth Regulation in a Newly Isolated Human Breast Cancer Cell Line
Stephen P. Ethier, Kristine E. Kokeny, Jane W. Ridings and Cheryl A. Dilts
Cancer Res February 15 1996 (56) (4) 899-907;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tumor Biology

  • Abstract 6119: RNAi rat models for drug discovery
  • Abstract 3834: Histone methyltransferase SET8 is regulated by miR-192/-215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells
  • Abstract 3788: CircHMGCS1 interacts with RNA binding protein HuR and maintains stem-like cells in gliomas
Show more Tumor Biology

Articles

  • Imprinting of a Genomic Domain of 11p15 and Loss of Imprinting in Cancer: An Introduction
  • Introduction of Stanley J. Korsmeyer
  • Organizational Structure: General Motors Cancer Research Foundation
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement