Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Carcinogenesis

Evidence That the Catechol 3,4-Dihydroxytamoxifen Is a Proximate Intermediate to the Reactive Species Binding Covalently to Proteins

Shangara S. Dehal and David Kupfer
Shangara S. Dehal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Kupfer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published March 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Metabolism of tamoxifen by rat and human hepatic microsomal cytochrome P450s (CYPs) forms a reactive intermediate that irreversibly binds to microsomal proteins (C. Mani and D. Kupfer, Cancer Res., 51: 6052–6058, 1991). The current study examines the nature of the tamoxifen metabolite that is proximate to the reactive intermediate(s). The rate of covalent binding of tamoxifen metabolites, tamoxifen N-oxide, N-desmethyltamoxifen, and tamoxifen N-oxide-epoxide was approximately equal to or less than that of tamoxifen. By contrast, covalent binding of 4-hydroxytamoxifen (4-OH-tam) was 3–5-fold higher than that of tamoxifen, indicating that among the metabolites examined, 4-OH-tam or its metabolite(s) is most proximate to the reactive intermediate(s). Incubation of 4-OH-tam with liver microsomes from PCN-treated rat yielded three detectable metabolites. One was identified as 4-OH-tam N-oxide via its facile reduction back to 4-OH-tam by titanium(III) chloride. Another metabolite of 4-OH-tam, assumed to be 3,4-dihydroxytamoxifen (3,4-di-OH-tam) catechol, was demonstrated by its monomethylation with [3H]S-adenosyl-l-methionine ([3H]SAM) in the presence of endogenous catechol-O-methyltransferase. Monomethylated catechol from 4-OH-tam was formed at a 3–4-fold higher rate than from tamoxifen. It was reasoned that if the catechol is the most proximate metabolite to the reactive intermediate, then its methylation would reduce the formation of the reactive intermediate and result in lower rate of covalent binding. In fact, addition of radioinert SAM to incubations of tamoxifen inhibited covalent binding by 17–23%. By contrast, inclusion of 1.0 mm S-adenosyl-l-homocysteine, a potent inhibitor of catechol-O-methyltransferase-mediated methylation of 3,4-di-OH-tam, essentially overcame the inhibition of the covalent binding by SAM. Additionally, ascorbic acid and glutathione, inhibitors of covalent binding of tamoxifen, produced an elevation of methylated catechol. These findings collectively indicate that 3,4-di-OH-tam is proximate to the ultimate reactive intermediate that results in covalent binding to microsomal proteins.

Footnotes

  • ↵2 Financial support provided by United States Public Health Service Grant ES00834 from the National Institute for Environmental Health Sciences is gratefully acknowledged.

  • ↵3 To whom requests for reprints should be addressed, at Worcester Foundation for Biomedical Research, 222 Maple Avenue, Shrewsbury, MA 01545. Phone: (508) 842-8921; Fax: (508) 842-9632.

  • Received October 11, 1995.
  • Accepted January 12, 1996.
  • ©1996 American Association for Cancer Research.
PreviousNext
Back to top
March 1996
Volume 56, Issue 6
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence That the Catechol 3,4-Dihydroxytamoxifen Is a Proximate Intermediate to the Reactive Species Binding Covalently to Proteins
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evidence That the Catechol 3,4-Dihydroxytamoxifen Is a Proximate Intermediate to the Reactive Species Binding Covalently to Proteins
Shangara S. Dehal and David Kupfer
Cancer Res March 15 1996 (56) (6) 1283-1290;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evidence That the Catechol 3,4-Dihydroxytamoxifen Is a Proximate Intermediate to the Reactive Species Binding Covalently to Proteins
Shangara S. Dehal and David Kupfer
Cancer Res March 15 1996 (56) (6) 1283-1290;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Carcinogenesis

  • Abstract LB-091: Characterization of molecular changes occurring during long-term treatment of human bronchial epithelial cells with cigarette smoke total particulate matter
  • Abstract LB-088: Ptch1 heterozygosity predisposes mice to developing IR-induced BCCs
  • Abstract LB-092: Programmed death-ligand 1 is overexpressed in bronchial preneoplastic lesions: can it be a risk indicator
Show more Carcinogenesis

Articles

  • The Prizes
  • Pax Genes and Their Role in Organogenesis
  • Core-Binding Factor: A Central Player in Hematopoiesis and Leukemia
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement