Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Multiplicity of Biliary Excretion Mechanisms for Irinotecan, CPT-11, and Its Metabolites in Rats

Xiao-Yan Chu, Yukio Kato and Yuichi Sugiyama
Xiao-Yan Chu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yukio Kato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published May 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We have reported previously that a canalicular multispecific organic anion transporter (cMOAT) is responsible for the biliary excretion of carboxylate forms of irinotecan, 7-ethyl-10-[4-(1-piperidino)-1 piperidino] carbonyloxy camptothecin (CPT-11), its active metabolite SN-38, and glucuronide conjugate (SN38-Glu) and the lactone form of SN38-Glu in rats. In this paper, the multiplicity of biliary excretion mechanisms for these four anionic compounds was investigated using isolated liver bile canalicular membrane vesicles (CMVs) obtained from Sprague Dawley rats. For the carboxylate form of CPT-11 and the lactone and carboxylate forms of SN38-Glu, ATP-dependent uptake consisted of both high- and low-affinity components in CMVs. Mutual inhibition studies with S-(2,4-dinitrophenyl)glutathione, a representative substrate for cMOAT, and the uptake study using CMVs from Eisai hyperbilirubinemic rats revealed that cMOAT is responsible for the biliary excretion of the low-affinity component of the carboxylate form of CPT-11 and the high-affinity component of both the lactone and carboxylate forms of SN38-Glu, whereas the high-affinity component for CPT-11 and the low-affinity component for SN38-Glu, which are expressed in Eisai hyperbilirubinemic rats, are governed by a transporter different from cMOAT. The carboxylate form of SN-38 was found to be transported by cMOAT alone. We conclude that multiple transporters, including cMOAT, are responsible for the biliary excretion of CPT-11 and its metabolites (anionic forms), and the contribution of each transporter differs greatly, depending on the substrates.

Footnotes

  • ↵1 This work was supported in part by a Grant-in-Aid for Scientific Research provided by the Ministry of Education, Science, Sports and Culture of Japan and in part by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare of Japan.

  • ↵2 To whom requests for reprints should be addressed.

  • Received November 13, 1996.
  • Accepted March 25, 1997.
  • ©1997 American Association for Cancer Research.
PreviousNext
Back to top
May 1997
Volume 57, Issue 10
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Multiplicity of Biliary Excretion Mechanisms for Irinotecan, CPT-11, and Its Metabolites in Rats
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Multiplicity of Biliary Excretion Mechanisms for Irinotecan, CPT-11, and Its Metabolites in Rats
Xiao-Yan Chu, Yukio Kato and Yuichi Sugiyama
Cancer Res May 15 1997 (57) (10) 1934-1938;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Multiplicity of Biliary Excretion Mechanisms for Irinotecan, CPT-11, and Its Metabolites in Rats
Xiao-Yan Chu, Yukio Kato and Yuichi Sugiyama
Cancer Res May 15 1997 (57) (10) 1934-1938;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
Show more Experimental Therapeutics

Articles

  • The Phenotypes Associated with ret Mutations in the Multiple Endocrine Neoplasia Type 2 Syndrome
  • The Effect of Chromosomal Translocations in Acute Leukemias: The LMO2 Paradigm in Transcription and Development
  • Insights from Bcl-2 and Myc: Malignancy Involves Abrogation of Apoptosis as well as Sustained Proliferation
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement