Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Carcinogenesis

Evidence for an Important Role of DNA Pyridyloxobutylation in Rat Lung Carcinogenesis by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone: Effects of Dose and Phenethyl Isothiocyanate

Marianne E. Staretz, Peter G. Foiles, Lisa M. Miglietta and Stephen S. Hecht
Marianne E. Staretz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter G. Foiles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa M. Miglietta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen S. Hecht
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published January 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), selectively induces lung tumors in F344 rats. NNK is metabolically activated to intermediates that methylate and pyridyloxobutylate DNA. To explore the importance of pyridyloxobutyl DNA adducts in NNK-induced rat lung tumorigenesis, the first study in this report examined levels of these adducts in whole lung and pulmonary cells of F344 rats treated with different doses of NNK (0.3, 1.0, 10.0, and 50 mg/kg; 3 × weekly for 2 weeks). Pyridyloxobutyl DNA adducts were highest in Clara cells compared to alveolar Type II cells, alveolar macrophages, and small cells, suggesting that enzymes involved in the formation of the pyridyloxobutylating species are concentrated in Clara cells. When we compared lung tumor incidence at the different doses of NNK (S. A. Belinsky et al., Cancer Res., 50: 3772–3780, 1990) versus pyridyloxobutyl DNA adducts in Type II cells, we observed a significant correlation. Because NNK-induced lung tumors arise from the Type II cells, this suggests an important role for pyridyloxobutyl DNA adducts. In the second study presented in this report, we examined the effect of dietary phenethyl isothiocyanate (PEITC), an inhibitor of lung tumor induction in F344 rats by NNK, on O6-methyldeoxyguanosine (O6-mG) and pyridyloxobutyl DNA adducts in whole lung and lung cells of F344 rats treated with NNK. F344 rats were fed control or PEITC-containing diets (3 µmol/g diet) before and throughout NNK treatment (1.76 mg/kg, three times weekly for 4, 8, 12, 16, or 20 weeks). PEITC inhibited formation of pyridyloxobutyl DNA adducts in whole lung and all lung cells except macrophages. There was also inhibition of O6-mG, but it varied with cell type and length of NNK treatment. Overall, PEITC treatment decreased pyridyloxobutyl DNA adducts by 57% in Clara cells, 51% in Type II cells, 40% in small cells, and 44% in whole lung. PEITC treatment decreased O6-mG levels by 52% in Clara cells, 19% in Type II cells and small cells, and 36% in whole lung. These results support the hypothesis that PEITC inhibition of NNK-induced lung tumors is a result of decreased metabolic activation and DNA binding of NNK. The 50% reduction of pyridyloxobutyl DNA adducts in Type II cells agreed well with the 50% reduction of NNK-induced lung tumors by PEITC. Because NNK-induced tumors arise from Type II cells, these results suggest an important role for pyridyloxobutyl DNA adducts in NNK-induced rat lung tumorigenesis.

Footnotes

  • ↵1 This study was supported by Grant CA-46535 from the National Cancer Institute.

  • ↵3 To whom requests for reprints should be addressed, at University of Minnesota Cancer Center, Box 806-UMHC, 420 Delaware St. SE, Minneapolis, MN 55455.

  • Received August 12, 1996.
  • Accepted November 14, 1996.
  • ©1997 American Association for Cancer Research.
PreviousNext
Back to top
January 1997
Volume 57, Issue 2
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for an Important Role of DNA Pyridyloxobutylation in Rat Lung Carcinogenesis by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone: Effects of Dose and Phenethyl Isothiocyanate
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evidence for an Important Role of DNA Pyridyloxobutylation in Rat Lung Carcinogenesis by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone: Effects of Dose and Phenethyl Isothiocyanate
Marianne E. Staretz, Peter G. Foiles, Lisa M. Miglietta and Stephen S. Hecht
Cancer Res January 15 1997 (57) (2) 259-266;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evidence for an Important Role of DNA Pyridyloxobutylation in Rat Lung Carcinogenesis by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone: Effects of Dose and Phenethyl Isothiocyanate
Marianne E. Staretz, Peter G. Foiles, Lisa M. Miglietta and Stephen S. Hecht
Cancer Res January 15 1997 (57) (2) 259-266;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Carcinogenesis

  • Abstract LB-089: Defining windows of susceptibility for low-dose exposure to endocrine disruptors in rat mammary development by microRNA profiling
  • Abstract LB-091: Characterization of molecular changes occurring during long-term treatment of human bronchial epithelial cells with cigarette smoke total particulate matter
  • Abstract LB-092: Programmed death-ligand 1 is overexpressed in bronchial preneoplastic lesions: can it be a risk indicator
Show more Carcinogenesis

Articles

  • Laureate Citations
  • Role of TCL1 and ALL1 in Human Leukemias and Development
  • The Partial Homeodomain of the Transcription Factor Pax-5 (BSAP) Is an Interaction Motif for the Retinoblastoma and TATA-binding Proteins
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement