Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Caffeic Acid Phenethyl Ester Stimulates Human Antioxidant Response Element-mediated Expression of the NAD(P)H:Quinone Oxidoreductase (NQO1) Gene

Anil K. Jaiswal, Radjendirane Venugopal, Jitka Mucha, Adelaide M. Carothers and Dezider Grunberger
Anil K. Jaiswal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Radjendirane Venugopal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jitka Mucha
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adelaide M. Carothers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dezider Grunberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant derived from the propolis of honeybee hives. CAPE was shown to inhibit the formation of intracellular hydrogen peroxide and oxidized bases in DNA of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated HeLa cells and was also found to induce a redox change that correlated with differential growth effects in transformed cells but not the nontumorigenic parental ones. Mediated via the electrophile or human antioxidant response element (hARE), induction of the expression of NAD(P)H quinone oxidoreductase (NQO1) and glutathione S-transferase Ya subunit genes by certain phenolic antioxidants has been correlated with the chemopreventive properties of these agents. Here, we determined by Northern analysis that CAPE treatment of hepatoma cells stimulates NQO1 gene expression in cultured human hepatoma cells (HepG2), and we characterized the effects of CAPE treatment on the expression of a reporter gene either containing or lacking the hARE or carrying a mutant version of this element in rodent hepatoma (Hepa-1) transfectants. A dose-dependent transactivation of human hARE-mediated chloramphenicol acetyltransferase (cat) gene expression was observed upon treatments of the Hepa-1 transfectants with TPA, a known inducer, as well as with CAPE. The combined treatments resulted in an apparent additive stimulation of the reporter expression. To learn whether this activation of cat gene expression was effected by protein kinase C in CAPE-treated cells, a comparison was made of cat gene activity after addition of calphostin, a protein kinase C inhibitor. Calphostin reduced the cat gene induction by TPA but not by CAPE, suggesting that stimulation of gene expression in this system by these agents proceeds via distinct mechanisms. Band-shift experiments to examine binding of transactivator proteins from nuclear extracts of treated and untreated cells to a hARE DNA probe showed that TPA exposure increased the binding level. In contrast, binding of factors to this probe was inhibited after either in vivo treatment of cells with CAPE or in vitro addition of this compound to the nuclear extract. In view of the clear stimulation by CAPE of gene expression mediated by hARE, possible explanations of this result are discussed.

Footnotes

  • ↵1 This investigation was supported by NIH Grant GM47466 (to A. K. J.).

  • ↵2 To whom requests for reprints should be addressed, at Columbia University, 701 West 168th Street, Room 533, New York, NY 10032. Phone: (212) 305–6923; Fax: (212) 305-5328; E-mail: dg21@columbia.edu.

  • Received October 19, 1995.
  • Accepted December 3, 1996.
  • ©1997 American Association for Cancer Research.
PreviousNext
Back to top
February 1997
Volume 57, Issue 3
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Caffeic Acid Phenethyl Ester Stimulates Human Antioxidant Response Element-mediated Expression of the NAD(P)H:Quinone Oxidoreductase (NQO1) Gene
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Caffeic Acid Phenethyl Ester Stimulates Human Antioxidant Response Element-mediated Expression of the NAD(P)H:Quinone Oxidoreductase (NQO1) Gene
Anil K. Jaiswal, Radjendirane Venugopal, Jitka Mucha, Adelaide M. Carothers and Dezider Grunberger
Cancer Res February 1 1997 (57) (3) 440-446;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Caffeic Acid Phenethyl Ester Stimulates Human Antioxidant Response Element-mediated Expression of the NAD(P)H:Quinone Oxidoreductase (NQO1) Gene
Anil K. Jaiswal, Radjendirane Venugopal, Jitka Mucha, Adelaide M. Carothers and Dezider Grunberger
Cancer Res February 1 1997 (57) (3) 440-446;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
Show more Experimental Therapeutics

Articles

  • Tissue Structure, Nuclear Organization, and Gene Expression in Normal and Malignant Breast
  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • Membership of Advisory Council
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement