Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

Increased gadd153 Messenger RNA Level Is Associated with Apoptosis in Human Leukemic Cells Treated with Etoposide

Béatrice Eymin, Laurence Dubrez, Michèle Allouche and Eric Solary
Béatrice Eymin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence Dubrez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michèle Allouche
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric Solary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Treatment of leukemic cells with topoisomerase inhibitors can lead to growth arrest and subsequent apoptotic cell death. The relationships between cell cycle regulation and apoptosis triggering remain poorly understood. The gadd153 gene encodes the nuclear protein CHOP 10 that acts as a negative modulator of CCAAT/enhancer binding protein transcriptional factors and inhibits cell cycle progression. We have investigated the relationships between gadd153 gene expression and apoptosis induction in four human leukemic cell lines with different sensitivities to apoptosis induced by etoposide (VP-16), a topoisomerase II inhibitor. The gadd153 gene was constitutively expressed in the four studied cell lines. In U937 and HL-60 cells that were very sensitive to apoptosis induction by the drug, VP-16 induced a time- and dose-dependent increase of gadd153 gene mRNA expression. Using agarose gel electrophoresis and a quantitative filter elution assay, apoptotic DNA fragmentation was observed to begin when gadd153 gene expression increased. Equitoxic doses of VP-16 (as defined using a 96-h 3-4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide assay) did not increase the gadd153 mRNA level in K562 and KCL22 cell lines that were more resistant to apoptosis induction by the drug. Nuclear run-on and mRNA stability experiments demonstrated that VP-16 treatment increased gadd153 gene transcription in the sensitive U937 cells. Cycloheximide did not prevent gadd153 expression increase. Both gadd153 mRNA level increase and internucleosomal DNA fragmentation were inhibited by N-tosyl-l-phenylalanine chloromethylketone, a serine threonine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, N-acetylcysteine, an inhibitor of oxidative metabolism, and overexpression of Bcl-2. Z-VAD and Z-DEVD peptides that inhibit interleukin 1β-converting enzyme-like proteases suppressed DNA fragmentation without preventing gadd153 mRNA increase in VP-16-treated U937 cells. These results indicate that gadd153 gene expression increase occurs downstream of events sensitive to N-tosyl-l-phenylalanine chloromethylketone, calpain inhibitor, I, and Bcl-2 and upstream of interleukin 1β-converting enzyme-related proteases activation in leukemic cells in which treatment with VP-16 induces rapid apoptosis.

Footnotes

  • ↵1 This work was supported by grants from the Ligue Bourguignonne Contre le Cancer, Ligue de Saône et Loire Contre le Cancer, and the Conseil Régional de Bourgogne.

  • ↵2 To whom requests for reprints should be addressed. Phone: 33-03-80-39-32-26; Fax: 33-03-80-29-36-05.

  • Received June 24, 1996.
  • Accepted December 20, 1996.
  • ©1997 American Association for Cancer Research.
PreviousNext
Back to top
February 1997
Volume 57, Issue 4
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Increased gadd153 Messenger RNA Level Is Associated with Apoptosis in Human Leukemic Cells Treated with Etoposide
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Increased gadd153 Messenger RNA Level Is Associated with Apoptosis in Human Leukemic Cells Treated with Etoposide
Béatrice Eymin, Laurence Dubrez, Michèle Allouche and Eric Solary
Cancer Res February 15 1997 (57) (4) 686-695;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Increased gadd153 Messenger RNA Level Is Associated with Apoptosis in Human Leukemic Cells Treated with Etoposide
Béatrice Eymin, Laurence Dubrez, Michèle Allouche and Eric Solary
Cancer Res February 15 1997 (57) (4) 686-695;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Chemically Induced Mutations in Mitochondrial DNA of Human Cells: Mutational Spectrum of N-Methyl-N′-nitro-N-nitrosoguanidine
  • Squalamine Inhibits Angiogenesis and Solid Tumor Growth in Vivo and Perturbs Embryonic Vasculature
  • Human Chromosome 21 Determines Growth Factor Dependence in Human/Mouse B-Cell Hybridomas
Show more Regular Articles

Experimental Therapeutics

  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
  • All-trans-Retinoic Acid Eliminates Immature Myeloid Cells from Tumor-bearing Mice and Improves the Effect of Vaccination
Show more Experimental Therapeutics

Articles

  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
  • All-trans-Retinoic Acid Eliminates Immature Myeloid Cells from Tumor-bearing Mice and Improves the Effect of Vaccination
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement