Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tumor Biology

Thrombospondin 1 and Type I Repeat Peptides of Thrombospondin 1 Specifically Induce Apoptosis of Endothelial Cells

Neng-hua Guo, Henry C. Krutzsch, John K. Inman and David D. Roberts
Neng-hua Guo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry C. Krutzsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John K. Inman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David D. Roberts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published May 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Thrombospondin 1 (TSP1) inhibits angiogenesis and modulates endothelial cell adhesion, motility, and growth. The antiproliferative activity of TSP1 is mimicked by synthetic peptides derived from the type I repeats of TSP1 that antagonize fibroblast growth factor 2 and activate latent transforming growth factor β. These TSP1 analogues induced programmed cell death in bovine aortic endothelial cells based on morphological changes, assessment of DNA fragmentation, and internucleosomal DNA cleavage. Intact TSP1 also induced DNA fragmentation. The endothelial cell response was specific because no DNA fragmentation was induced in MDA-MB-435S breast carcinoma cells, although TSP1 and the peptide conjugates inhibited the growth of both cell types. Apoptosis did not depend on activation of latent transforming growth factor β because peptides lacking the activating sequence RFK were active. Apoptosis was not sensitive to inhibitors of ceramide generation but was inhibited by the phosphatase inhibitor vanadate. Induction of DNA fragmentation by the peptides was decreased when endothelial cell cultures reached confluence. Growth of the cells on a fibronectin substrate also suppressed induction of apoptosis by TSP1 or the peptides. Differential sensitivities to kinase inhibitors suggest that apoptosis and inhibition of proliferation are mediated by distinct signal transduction pathways. These results demonstrate that induction of apoptosis by the TSP1 analogues is not a general cytotoxic effect and is conditional on a lack of strong survival-promoting signals, such as those provided by a fibronectin matrix. The antitumor activity of TSP1 may therefore result from an increased sensitivity to apoptosis in endothelial cells adjacent to a provisional matrix during formation of vascular beds in tumors expressing TSP1.

Footnotes

  • ↵1 Supported in part by Department of Defense Grant DAMD17-94-J-4499. The content of this article does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred.

  • ↵2 To whom requests for reprints should be addressed, at Building 10, Room 2A33, 10 Center Drive MSC 1500, Bethesda, MD 20892-1500. Phone: (301) 496-6264; Fax: (301) 402-0043.

  • Received October 7, 1996.
  • Accepted March 8, 1997.
  • ©1997 American Association for Cancer Research.
PreviousNext
Back to top
May 1997
Volume 57, Issue 9
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Thrombospondin 1 and Type I Repeat Peptides of Thrombospondin 1 Specifically Induce Apoptosis of Endothelial Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Thrombospondin 1 and Type I Repeat Peptides of Thrombospondin 1 Specifically Induce Apoptosis of Endothelial Cells
Neng-hua Guo, Henry C. Krutzsch, John K. Inman and David D. Roberts
Cancer Res May 1 1997 (57) (9) 1735-1742;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Thrombospondin 1 and Type I Repeat Peptides of Thrombospondin 1 Specifically Induce Apoptosis of Endothelial Cells
Neng-hua Guo, Henry C. Krutzsch, John K. Inman and David D. Roberts
Cancer Res May 1 1997 (57) (9) 1735-1742;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tumor Biology

  • Abstract 6119: RNAi rat models for drug discovery
  • Abstract 3834: Histone methyltransferase SET8 is regulated by miR-192/-215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells
  • Abstract 3788: CircHMGCS1 interacts with RNA binding protein HuR and maintains stem-like cells in gliomas
Show more Tumor Biology

Articles

  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • Introduction of H. Robert Horvitz
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement