Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Bcl-xL Is Phosphorylated in Malignant Cells following Microtubule Disruption

Marianne S. Poruchynsky, Emily E. Wang, Charles M. Rudin, Mikhail V. Blagosklonny and Tito Fojo
Marianne S. Poruchynsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emily E. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles M. Rudin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mikhail V. Blagosklonny
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tito Fojo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published August 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The oncogenic protein Bcl-2 functions as a potent inhibitor of programmed cell death. This survival activity has been shown in some settings to be influenced by the Bcl-2 phosphorylation state. It has been demonstrated that treatment with microtubule-targeted agents results in phosphorylation of both Raf-1 kinase and Bcl-2. The Bcl-2-related family member Bcl-xL also exhibits a death suppressive activity, but its potential for phosphorylation following exposure to drugs that interact with microtubules has not been evaluated. Several tumor cell lines with low or undetectable levels of Bcl-2 protein expression were found to express Bcl-xL. A more slowly migrating Bcl-xL band was observed on immunoblots after cells were treated with microtubule-targeted agents. The appearance of this band was responsive to dose and was absent when the cell lysates were treated with λ protein phosphatase. Using a Bcl-xL-specific monoclonal antibody, the phosphorylated form of Bcl-xL was immunoprecipitated from cells treated with paclitaxel and metabolically labeled with 32P-labeled inorganic orthophosphate. Herein, we report that Bcl-xL is phosphorylated in malignant cells after incubation with agents that target tubulin, including paclitaxel, vincristine, vinblastine, colchicine, and nocodazole. Moreover, paclitaxel-resistant ovarian carcinoma cell lines that have mutations in tubulin failed to exhibit phosphorylation of Bcl-xL after paclitaxel exposure, but they did demonstrate Bcl-xL phosphorylation in the presence of other tubulin-targeting agents. As observed for Bcl-2, phosphorylation of Bcl-xL was accompanied by phosphorylation of Raf-1. Interestingly, phosphorylation of these three proteins failed to occur or was much less pronounced when cells grown at high density were challenged with drug. Also, reduced Raf-1 expression, observed after treatment of cells with geldanamycin prior to and during incubation with the microtubule-active drugs, correlated with diminished Bcl-xL, phosphorylation. Taken together, these results suggest that Bcl-xL, like Bcl-2, is phosphorylated by agents that disrupt microtubule architecture. By analogy with Bcl-2, this phosphorylation may play a critical role in modulating Bcl-xL function and may be an important determinant of microtubule-directed chemotherapeutic efficacy in human tumors.

Footnotes

  • ↵1 To whom requests for reprints should be addressed, at National Cancer Institute, NIH, Division of Clinical Sciences, Medicine Branch, Building 10, Room 12N226, 9000 Rockville Pike, Bethesda, MD 20892-1906. Phone: (301) 496-6611; Fax: (301) 402-0172.

  • Received October 15, 1997.
  • Accepted June 2, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
August 1998
Volume 58, Issue 15
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bcl-xL Is Phosphorylated in Malignant Cells following Microtubule Disruption
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Bcl-xL Is Phosphorylated in Malignant Cells following Microtubule Disruption
Marianne S. Poruchynsky, Emily E. Wang, Charles M. Rudin, Mikhail V. Blagosklonny and Tito Fojo
Cancer Res August 1 1998 (58) (15) 3331-3338;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Bcl-xL Is Phosphorylated in Malignant Cells following Microtubule Disruption
Marianne S. Poruchynsky, Emily E. Wang, Charles M. Rudin, Mikhail V. Blagosklonny and Tito Fojo
Cancer Res August 1 1998 (58) (15) 3331-3338;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
  • Antitumor Effect by Interleukin-11 Receptor α-Locus Chemokine/CCL27, Introduced into Tumor Cells through a Recombinant Adenovirus Vector
  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
Show more Experimental Therapeutics

Articles

  • The Prizes
  • Role of TCL1 and ALL1 in Human Leukemias and Development
  • Pax Genes and Their Role in Organogenesis
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement