Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Cellular Localization Domains of a Rabbit and a Human Carboxylesterase: Influence on Irinotecan (CPT-11) Metabolism by the Rabbit Enzyme

Philip M. Potter, Judith S. Wolverton, Christopher L. Morton, Monika Wierdl and Mary K. Danks
Philip M. Potter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Judith S. Wolverton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher L. Morton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Monika Wierdl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary K. Danks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published August 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Enzyme activation of prodrugs to improve the therapeutic index of specific anticancer agents is an attractive alternative to current chemotherapy regimens. This study addresses the potential for activating irinotecan (CPT-11) with recombinant carboxylesterases (CEs). CEs are a ubiquitous class of enzymes thought to be involved in the detoxification of xenobiotics. Their primary amino acid sequence indicates that these proteins should be localized to the endoplasmic reticulum. By PCR-mediated mutagenesis of a rabbit liver and a human alveolar macrophage CE cDNA, expression in Cos7 cells, and subsequent immunohistochemical localization, we have determined that an 18-amino acid NH2-terminal hydrophobic signal peptide is responsible for the localization of these proteins to the endoplasmic reticulum. By similar approaches, we have demonstrated that the COOH-terminal amino acids HIEL prevent secretion of the proteins from the cell. Enzymatic activity was lost by removing the NH2-terminal domain; however, active enzyme could be detected in the culture media of cells expressing the COOH-terminally truncated proteins. Secretion of CEs lacking the six COOH-terminal amino acids could be prevented with brefeldin A, confirming that these truncated enzymes were processed and released from cells by endoplasmic reticulum-mediated exocytosis. Double-truncation mutant enzymes lacking both NH2- and COOH-terminal sequences demonstrated immunostaining patterns similar to those of the NH2-terminally truncated proteins and also lacked CE activity. In all cases, metabolism of the classic esterase substrate o-nitrophenyl acetate predicted the sensitivity of cells expressing the rabbit CE to the anticancer agent CPT-11. In addition, the secreted enzyme sensitized Cos7 cells to this drug, indicating that protein association with a lipid bilayer is not required for substrate metabolism.

Footnotes

  • ↵1 Supported by NIH Grants CA-66124, CA-63512, CA-23099, and CA-76202, the Cancer Center Core Grant P30-CA-21765, and by the American Lebanese Syrian Associated Charities.

  • ↵2 To whom requests for reprints should be addressed, at Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105. Phone: (901) 495-3440; Fax: (901) 521-1668; E-mail: mary.danks@stjude.org.

  • Received April 10, 1998.
  • Accepted June 17, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
August 1998
Volume 58, Issue 16
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cellular Localization Domains of a Rabbit and a Human Carboxylesterase: Influence on Irinotecan (CPT-11) Metabolism by the Rabbit Enzyme
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cellular Localization Domains of a Rabbit and a Human Carboxylesterase: Influence on Irinotecan (CPT-11) Metabolism by the Rabbit Enzyme
Philip M. Potter, Judith S. Wolverton, Christopher L. Morton, Monika Wierdl and Mary K. Danks
Cancer Res August 15 1998 (58) (16) 3627-3632;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cellular Localization Domains of a Rabbit and a Human Carboxylesterase: Influence on Irinotecan (CPT-11) Metabolism by the Rabbit Enzyme
Philip M. Potter, Judith S. Wolverton, Christopher L. Morton, Monika Wierdl and Mary K. Danks
Cancer Res August 15 1998 (58) (16) 3627-3632;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • The Biological and Biochemical Effects of CP-654577, a Selective erbB2 Kinase Inhibitor, on Human Breast Cancer Cells
  • Novel Mechanisms of Apoptosis Induced by Histone Deacetylase Inhibitors
  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
Show more Experimental Therapeutics

Articles

  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • Laureates
  • The Role of Chimeric Paired Box Transcription Factors in the Pathogenesis of Pediatric Rhabdomyosarcoma
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement