Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Intratumoral Conversion of 5-Fluorocytosine to 5-Fluorouracil by Monoclonal Antibody-Cytosine Deaminase Conjugates: Noninvasive Detection of Prodrug Activation by Magnetic Resonance Spectroscopy and Spectroscopic Imaging

Eric O. Aboagye, Dmitri Artemov, Peter D. Senter and Zaver M. Bhujwalla
Eric O. Aboagye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dmitri Artemov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter D. Senter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zaver M. Bhujwalla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The monitoring of antibody-directed enzyme-prodrug therapies requires evaluation of drug activation within the tissues of interest. We have demonstrated the feasibility of noninvasive magnetic resonance spectroscopy and spectroscopic imaging (chemical shift imaging) to detect activation of the prodrug 5-fluorocytosine (5-FCyt) to the cytotoxic species 5-fluorouracil (5-FU) by monoclonal antibody-cytosine deaminase (CD) conjugates. In vitro, L6-CD but not 1F5-CD selectively metabolized 5-FCyt to 5-FU on H2981 human lung adenocarcinoma cells because of the presence and absence of cell surface L6 and CD20 antigens, respectively. After pretreatment of H2981 tumor-bearing mice with L6-CD, in vivo metabolism of 5-FCyt to 5-FU within the tumors was detected by 19F magnetic resonance spectroscopy; the chemical shift separation between 5-FCyt and 5-FU resonances was ∼1.2 ppm. 5-FU levels were 50–100% of 5-FCyt levels in tumors 10–60 min after 5-FCyt administration. Whole body 19F chemical shift imaging (6 × 6 mm in-plane resolution) of tumor-bearing mice demonstrated the highest signal intensity of 5-FU within the tumor region. This study supports further development of noninvasive magnetic resonance methods for preclinical and clinical monitoring of CD enzyme-prodrug therapies.

Footnotes

  • ↵1 Supported in part by USAMRMC Grant DAMD17-96-1-6131.

  • ↵2 To whom requests for reprints should be addressed, at Department of Radiology, MR Research, The Johns Hopkins University School of Medicine, 211 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205.

  • Received June 9, 1998.
  • Accepted July 30, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
September 1998
Volume 58, Issue 18
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Intratumoral Conversion of 5-Fluorocytosine to 5-Fluorouracil by Monoclonal Antibody-Cytosine Deaminase Conjugates: Noninvasive Detection of Prodrug Activation by Magnetic Resonance Spectroscopy and Spectroscopic Imaging
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Intratumoral Conversion of 5-Fluorocytosine to 5-Fluorouracil by Monoclonal Antibody-Cytosine Deaminase Conjugates: Noninvasive Detection of Prodrug Activation by Magnetic Resonance Spectroscopy and Spectroscopic Imaging
Eric O. Aboagye, Dmitri Artemov, Peter D. Senter and Zaver M. Bhujwalla
Cancer Res September 15 1998 (58) (18) 4075-4078;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Intratumoral Conversion of 5-Fluorocytosine to 5-Fluorouracil by Monoclonal Antibody-Cytosine Deaminase Conjugates: Noninvasive Detection of Prodrug Activation by Magnetic Resonance Spectroscopy and Spectroscopic Imaging
Eric O. Aboagye, Dmitri Artemov, Peter D. Senter and Zaver M. Bhujwalla
Cancer Res September 15 1998 (58) (18) 4075-4078;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • Down-Regulation of Regulatory Subunit Type 1A of Protein Kinase A Leads to Endocrine and Other Tumors
  • Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia
  • Recombinant Listeria Vaccines Containing PEST Sequences Are Potent Immune Adjuvants for the Tumor-Associated Antigen Human Papillomavirus-16 E7
Show more Advances in Brief

Articles

  • Down-Regulation of Regulatory Subunit Type 1A of Protein Kinase A Leads to Endocrine and Other Tumors
  • Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia
  • Recombinant Listeria Vaccines Containing PEST Sequences Are Potent Immune Adjuvants for the Tumor-Associated Antigen Human Papillomavirus-16 E7
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement