Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Pharmacological Inhibitors of Mammalian Fatty Acid Synthase Suppress DNA Replication and Induce Apoptosis in Tumor Cell Lines

Ellen S. Pizer, Francis J. Chrest, Joseph A. DiGiuseppe and Wan Fang Han
Ellen S. Pizer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francis J. Chrest
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph A. DiGiuseppe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wan Fang Han
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Pharmacological inhibitors of the anabolic enzyme, fatty acid synthase (FAS), including the natural product cerulenin and the novel compound c75, are selectively cytotoxic to cancer cells via induction of apoptosis, apparently related to the tumor cell phenotype of abnormally elevated fatty acid synthetic metabolism. As part of a larger effort to understand the immediate downstream effect of FAS inhibition that leads to apoptosis, the effects of these inhibitors on cell cycle progression were examined. Both FAS inhibitors produce rapid, profound inhibition of DNA replication and S phase progression in human cancer cells. The dose responses for fatty acid synthesis inhibition and DNA synthesis inhibition are similar. The kinetics of both effects are rapid, with fatty acid synthesis inhibition occurring within 30 min and DNA synthesis inhibition occurring within 90 min of drug exposure. Meanwhile, apoptotic changes are not detected until 6 h or later after inhibitor exposure. Fatty acid synthetic pathway activity and the magnitude of DNA synthesis inhibition by FAS inhibitors are increased in parallel by withdrawal of lipid-containing serum from the cultures. The mechanism of DNA synthesis inhibition by cerulenin is indirect, because expression of certain viral oncogenes rescues DNA synthesis/S phase progression in cerulenin-exposed cells. The data suggest a direct linkage at a regulatory level, between fatty acid synthesis and DNA synthesis in proliferating tumor cells.

Footnotes

  • ↵1 This work was supported by R29CA75219. E. S. P. is supported by a Passano Clinician Scientist Award, awarded through the Johns Hopkins University School of Medicine.

  • ↵2 To whom requests for reprints should be addressed, at Department of Pathology, AA154C, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224. Phone: (410) 550-3670; Fax: (410) 550-0075; E-mail: epizer@jhmi.edu.

  • Received July 7, 1998.
  • Accepted September 1, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
October 1998
Volume 58, Issue 20
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological Inhibitors of Mammalian Fatty Acid Synthase Suppress DNA Replication and Induce Apoptosis in Tumor Cell Lines
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Pharmacological Inhibitors of Mammalian Fatty Acid Synthase Suppress DNA Replication and Induce Apoptosis in Tumor Cell Lines
Ellen S. Pizer, Francis J. Chrest, Joseph A. DiGiuseppe and Wan Fang Han
Cancer Res October 15 1998 (58) (20) 4611-4615;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Pharmacological Inhibitors of Mammalian Fatty Acid Synthase Suppress DNA Replication and Induce Apoptosis in Tumor Cell Lines
Ellen S. Pizer, Francis J. Chrest, Joseph A. DiGiuseppe and Wan Fang Han
Cancer Res October 15 1998 (58) (20) 4611-4615;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-2 Fusion cDNA for Cancer Gene Immunotherapy
  • NIMA-Related Protein Kinase 1 Is Involved Early in the Ionizing Radiation-Induced DNA Damage Response
  • Conditional Expression of K-ras in an Epithelial Compartment that Includes the Stem Cells Is Sufficient to Promote Squamous Cell Carcinogenesis
Show more Advances in Brief

Articles

  • Intersections between Blood Cell Development and Leukemia Genes
  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • The Prizes
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement