Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Angiostatin Suppresses Malignant Glioma Growth in Vivo

Matthias Kirsch, Jon Strasser, Rafael Allende, Lorenzo Bello, Jianping Zhang and Peter McL. Black
Matthias Kirsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jon Strasser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rafael Allende
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lorenzo Bello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianping Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter McL. Black
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Human malignant gliomas are among the most malignant and most intensely vascularized solid tumors. Angiostatin, an internal fragment of plasminogen, was recently discovered as an endogenous inhibitor of tumor-related angiogenesis by selective inhibition of endothelial cell growth.

Using xenograft transplants of rat and primary human glioma cells in immunodeficient mice we investigated the effects of systemic administration of angiostatin purified from human plasma on tumor growth. The rat C6 and 9L glioma and the human U87 glioma cell lines implanted either s.c. or intracranially in Swiss nude mice responded to angiostatin in a dose-dependent fashion with growth inhibition to 11% of controls (P < 0.01), without detectable signs of toxicity. The inhibition of treated tumors was accompanied by a marked reduction of vascularity to 38% of controls (P < 0.01) in the presence of an up to 6-fold increased apoptotic index (P < 0.01), consistent with the hypothesis that angiostatin acts tumoristatic by inhibiting tumor-induced endothelial cell proliferation. Expression analysis of growth factors in angiostatin-treated tumors revealed an up to 3-fold decrease in vascular endothelial growth factor-mRNA and an up to 4-fold increase in basic fibroblast growth factor-mRNA, as compared with untreated controls in rat gliomas (P < 0.01). This suggests that inhibition of the tumorigenic phenotype may be mediated in part by a down-regulation of vascular endothelial growth factor expression within the tumor.

Our data demonstrate that systemic administration of angiostatin efficiently suppresses malignant glioma growth in vivo. The tumoristatic activity against intracranial tumors independent of the blood brain barrier suggests that targeting the vascular compartment may offer novel therapeutic strategies against malignant gliomas.

Footnotes

  • ↵1 Supported by a fellowship grant by the Deutsche Forschungsgemeinschaft (to M. K.).

  • ↵2 These authors contributed equally to this work.

  • ↵3 Requests for reprints should be addressed either to: Matthias Kirsch at Klinik und Poliklinik für Neurochirurgie, Fetscherstraße 74, 01307 Dresden, Federal Republic of Germany. Phone: 49-351-458-2883; Fax: 49-351-458-4304; or Peter McL. Black at Neurosurgery, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115. Phone: (617) 732-6842; Fax: (617) 232-9029.

  • Received May 11, 1998.
  • Accepted August 17, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
October 1998
Volume 58, Issue 20
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Angiostatin Suppresses Malignant Glioma Growth in Vivo
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Angiostatin Suppresses Malignant Glioma Growth in Vivo
Matthias Kirsch, Jon Strasser, Rafael Allende, Lorenzo Bello, Jianping Zhang and Peter McL. Black
Cancer Res October 15 1998 (58) (20) 4654-4659;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Angiostatin Suppresses Malignant Glioma Growth in Vivo
Matthias Kirsch, Jon Strasser, Rafael Allende, Lorenzo Bello, Jianping Zhang and Peter McL. Black
Cancer Res October 15 1998 (58) (20) 4654-4659;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • Mammary Carcinoma Suppression by Cellular Retinoic Acid Binding Protein-II
  • E1A, E1B Double-restricted Adenovirus for Oncolytic Gene Therapy of Gallbladder Cancer
  • All-trans-Retinoic Acid Eliminates Immature Myeloid Cells from Tumor-bearing Mice and Improves the Effect of Vaccination
Show more Experimental Therapeutics

Articles

  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • Identification and Characterization of Collaborating Oncogenes in Compound Mutant Mice
  • Introduction of H. Robert Horvitz
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement