Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Functional Interactions of p53 with Poly(ADP-ribose) Polymerase (PARP) during Apoptosis following DNA Damage: Covalent Poly(ADP-ribosyl)ation of p53 by Exogenous PARP and Noncovalent Binding of p53 to the Mr 85,000 Proteolytic Fragment

Sunitha R. Kumari, Hilda Mendoza-Alvarez and Rafael Alvarez-Gonzalez
Sunitha R. Kumari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hilda Mendoza-Alvarez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rafael Alvarez-Gonzalez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We have examined the domain-specific interactions between p53 and poly(ADP-ribose)polymerase (PARP) (E.C. 2.4.2.30) in apoptotic HeLa cells. Apoptosis was induced by exposing cells to 50 µm N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for increasing lengths of time and was confirmed by: (a) oligonucleosomal fragmentation of chromatin; (b) increase in p53 levels; and (c) degradation of PARP into the characteristic Mr 85,000 (COOH-terminal catalytic domain) and Mr 29,000 (DNA-binding domain) peptide fragments. We also immunodetected p53 in immunoprecipitates obtained with a PARP-specific antibody. However, intact PARP coimmunoprecipitated with a p53-specific antibody during the initial 30 min of MNNG treatment. After 60 min, only the COOH-terminal fragment coimmunoprecipitated with p53, indicating that PARP noncovalently binds p53 via its Mr 85,000 catalytic domain. Therefore, we next examined p53 as a covalent target for poly(ADP-ribosyl)ation. Although p53 was not endogenously poly(ADP-ribosyl)ated in situ, incubation of cell extracts with full-length PARP from calf thymus and [32P]βNAD+ resulted in its time-dependent poly(ADP-ribosyl)ation. In summary, our results are consistent with the conclusion that PARP and p53 are activated with nonoverlapping kinetics during apoptosis.

Footnotes

  • ↵1 This project was supported by Grant 9678-014 from the Texas Advanced Research Program and Grant GM45451 from the NIH.

  • ↵2 To whom requests for reprints should be addressed, at Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699. Phone: (817) 735-2117; Fax: (817) 735-2118; E-mail: ralvarez@hsc.unt.edu.

  • Received July 14, 1998.
  • Accepted September 24, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
November 1998
Volume 58, Issue 22
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Interactions of p53 with Poly(ADP-ribose) Polymerase (PARP) during Apoptosis following DNA Damage: Covalent Poly(ADP-ribosyl)ation of p53 by Exogenous PARP and Noncovalent Binding of p53 to the Mr 85,000 Proteolytic Fragment
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Functional Interactions of p53 with Poly(ADP-ribose) Polymerase (PARP) during Apoptosis following DNA Damage: Covalent Poly(ADP-ribosyl)ation of p53 by Exogenous PARP and Noncovalent Binding of p53 to the Mr 85,000 Proteolytic Fragment
Sunitha R. Kumari, Hilda Mendoza-Alvarez and Rafael Alvarez-Gonzalez
Cancer Res November 15 1998 (58) (22) 5075-5078;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Functional Interactions of p53 with Poly(ADP-ribose) Polymerase (PARP) during Apoptosis following DNA Damage: Covalent Poly(ADP-ribosyl)ation of p53 by Exogenous PARP and Noncovalent Binding of p53 to the Mr 85,000 Proteolytic Fragment
Sunitha R. Kumari, Hilda Mendoza-Alvarez and Rafael Alvarez-Gonzalez
Cancer Res November 15 1998 (58) (22) 5075-5078;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-2 Fusion cDNA for Cancer Gene Immunotherapy
  • NIMA-Related Protein Kinase 1 Is Involved Early in the Ionizing Radiation-Induced DNA Damage Response
  • 2-Arachidonoylglycerol
Show more Advances in Brief

Articles

  • Role of TCL1 and ALL1 in Human Leukemias and Development
  • Introduction of H. Rodney Withers
  • Id Gene Expression as a Key Mediator of Tumor Cell Biology
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement