Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tumor Biology

Role of the Plasminogen Activator and Matrix Metalloproteinase Systems in Epidermal Growth Factor- and Scatter Factor-stimulated Invasion of Carcinoma Cells

Eben L. Rosenthal, Timothy M. Johnson, Edward D. Allen, Ingrid J. Apel, Antonello Punturieri and Stephen J. Weiss
Eben L. Rosenthal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy M. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward D. Allen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ingrid J. Apel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonello Punturieri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen J. Weiss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Normal as well as neoplastic cells traverse extracellular matrix barriers by mobilizing proteolytic enzymes in response to epidermal growth factor (EGF)-EGF receptor (EGFR) or hepatocyte growth factor/scatter factor (SF)-c-Met interactions. The plasminogen activator-plasminogen axis has been proposed to play a key role during cell invasion, but the normal development of plasminogen activator- as well as that of plasminogen-deficient mice supports the existence of alternate proteolytic systems that permit cells to traverse extracellular matrix barriers. To characterize the role that matrix-degrading proteinases play in EGF- or SF-stimulated invasion, a human squamous carcinoma cell line (UM-SCC-1) was triggered atop the matrices of type I collagen or human dermal explants in a three-dimensional culture system. During EGF- or SF-induced invasion, UM-SCC-1 cells expressed urokinase-type plasminogen activator (uPA) and uPA receptor as well as the matrix metalloproteinases (MMPs), membrane-type MMP-1, collagenase 1, stromelysin 1, and gelatinase B. Despite the presence of a positive correlation between uPA receptor-uPA expression and growth factor-stimulated invasion, UM-SCC-1 invasion was not affected by inhibitors directed against the plasminogen activator-plasminogen axis. In contrast, both recombinant and synthetic MMP inhibitors completely suppressed invasion by either EGF- or SF-stimulated cells without affecting either proteinase expression or cell motility across collagen-coated surfaces. These data demonstrate that MMPs, but not the plasminogen activator-plasmin system, can directly regulate the ability of either EGF- or SF-stimulated tumor cells to invade interstitial matrix barriers.

Footnotes

  • ↵1 Supported by NIH Grant CA71699, the American Society for Head and Neck Surgery, and the American Academy of Otolaryngology.

  • ↵2 To whom requests for reprints should be addressed, at Division of Hematology/Oncology, 5220 MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0640. Phone: (313) 764-0030; Fax: (313) 764-0101; E-mail: SJWEISS@umich.edu.

  • Received April 7, 1998.
  • Accepted September 14, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
November 1998
Volume 58, Issue 22
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of the Plasminogen Activator and Matrix Metalloproteinase Systems in Epidermal Growth Factor- and Scatter Factor-stimulated Invasion of Carcinoma Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Role of the Plasminogen Activator and Matrix Metalloproteinase Systems in Epidermal Growth Factor- and Scatter Factor-stimulated Invasion of Carcinoma Cells
Eben L. Rosenthal, Timothy M. Johnson, Edward D. Allen, Ingrid J. Apel, Antonello Punturieri and Stephen J. Weiss
Cancer Res November 15 1998 (58) (22) 5221-5230;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Role of the Plasminogen Activator and Matrix Metalloproteinase Systems in Epidermal Growth Factor- and Scatter Factor-stimulated Invasion of Carcinoma Cells
Eben L. Rosenthal, Timothy M. Johnson, Edward D. Allen, Ingrid J. Apel, Antonello Punturieri and Stephen J. Weiss
Cancer Res November 15 1998 (58) (22) 5221-5230;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tumor Biology

  • Abstract 6119: RNAi rat models for drug discovery
  • Abstract 3834: Histone methyltransferase SET8 is regulated by miR-192/-215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells
  • Abstract 3788: CircHMGCS1 interacts with RNA binding protein HuR and maintains stem-like cells in gliomas
Show more Tumor Biology

Articles

  • BCL-2 Gene Family and the Regulation of Programmed Cell Death
  • The Effect of Chromosomal Translocations in Acute Leukemias: The LMO2 Paradigm in Transcription and Development
  • Introduction of H. Robert Horvitz
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement