Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics

Drug Resistance Patterns of Human Neuroblastoma Cell Lines Derived from Patients at Different Phases of Therapy

Nino Keshelava, Robert C. Seeger, Susan Groshen and C. Patrick Reynolds
Nino Keshelava
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert C. Seeger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan Groshen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Patrick Reynolds
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published December 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To determine whether neuroblastomas acquire a sustained drug-resistant phenotype from exposure to chemotherapeutic agents given to patients in vivo, we studied neuroblastoma cell lines established at different points of therapy: six at diagnosis before therapy (DX), six at progressive disease during induction therapy (PD-Ind), and five at relapse after intensive chemoradiotherapy and bone marrow transplantation (PD-BMT). Cells were maintained in the absence of drug selective pressure. Dose-response curves of melphalan, cisplatin, carboplatin, doxorubicin, and etoposide for the cell line panel were determined by measuring cytotoxicity with a 96-well-plate digital imaging microscopy (DIMSCAN) microassay. Drug resistance of cell lines progressively increased with the intensity of therapy delivered in vivo. The greatest resistance was seen in PD-BMT cell lines: IC90 values in PD-BMT cell lines were higher than clinically achievable drug levels by 1–37 times for melphalan, 1–9 times for carboplatin, 25–78 times for cisplatin, 6–719 times for doxorubicin, and 3–52 times for etoposide. Genomic amplification of MYCN did not correlate with resistance. Cross-resistance by Pearson correlation (r ≥ 0.6) was observed between: (a) cisplatin + doxorubicin; (b) carboplatin + cisplatin, etoposide, or melphalan; (c) etoposide + cisplatin, melphalan, or doxorubicin. These data indicate that during therapy, neuroblastomas can acquire resistance to cytotoxic drugs because of the population expansion of tumor cells possessing stable genetic or epigenetic alterations that confer resistance.

Footnotes

  • ↵1 Supported in part by a Childrens Hospital Los Angeles Research Institute Research Career Development Fellowship; the Neil Bogart Memorial Laboratories of the T. J. Martell Foundation for Leukemia, Cancer, and AIDS Research; by National Cancer Institute Grants CA60104, CA13539, and CA14089; and by the American Institute for Cancer Research.

  • ↵2 To whom requests for reprints should be addressed, at Division of Hematology-Oncology, MS# 57, Childrens Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027. Phone: (323) 669-5646; Fax: (323) 664-9226/9455; E-mail: cpreynol@hsc.usc.edu.

  • Received February 27, 1998.
  • Accepted September 25, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
December 1998
Volume 58, Issue 23
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Drug Resistance Patterns of Human Neuroblastoma Cell Lines Derived from Patients at Different Phases of Therapy
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Drug Resistance Patterns of Human Neuroblastoma Cell Lines Derived from Patients at Different Phases of Therapy
Nino Keshelava, Robert C. Seeger, Susan Groshen and C. Patrick Reynolds
Cancer Res December 1 1998 (58) (23) 5396-5405;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Drug Resistance Patterns of Human Neuroblastoma Cell Lines Derived from Patients at Different Phases of Therapy
Nino Keshelava, Robert C. Seeger, Susan Groshen and C. Patrick Reynolds
Cancer Res December 1 1998 (58) (23) 5396-5405;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental Therapeutics

  • The Biological and Biochemical Effects of CP-654577, a Selective erbB2 Kinase Inhibitor, on Human Breast Cancer Cells
  • Novel Mechanisms of Apoptosis Induced by Histone Deacetylase Inhibitors
  • Phosphatidylinositol 3′-Kinase Is Required for Growth of Mast Cells Expressing the Kit Catalytic Domain Mutant
Show more Experimental Therapeutics

Articles

  • Laureate Citations
  • Role of TCL1 and ALL1 in Human Leukemias and Development
  • The Partial Homeodomain of the Transcription Factor Pax-5 (BSAP) Is an Interaction Motif for the Retinoblastoma and TATA-binding Proteins
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement