Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Advances in Brief

Human Fibroblasts Expressing the Human Papillomavirus E6 Gene Are Deficient in Global Genomic Nucleotide Excision Repair and Sensitive to Ultraviolet Irradiation

James M. Ford, Elinor L. Baron and Philip C. Hanawalt
James M. Ford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elinor L. Baron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip C. Hanawalt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We investigated the role of wild-type p53 activity in modulating nucleotide excision repair after UV irradiation in normal and p53-deficient primary human fibroblasts created by expression of the human papillomavirus 16 E6 gene. Compared with parental cells, the E6-expressing fibroblasts were deficient in global genomic repair of both UV-induced cyclobutane pyrimidine dimers and 6-4 photoproducts but exhibitd normal transcription-coupled repair. The E6-expressing cells were also more sensitive than their parental counterparts to UV irradiation and displayed similar levels of UV-induced apoptosis. These results suggest that disruption of wild-type p53 function by E6 expression results in selective loss of p53-dependent global genomic nucleotide excision repair, but not UV-induced apoptosis, leading to enhanced UV sensitivity.

Footnotes

  • ↵1 This work was supported by Clinical Investigator Award K08-CA64330 from the National Cancer Institute (to J. M. F.), a Howard Hughes Undergraduate Research Fellowship (to E. L. B.), and Outstanding Investigator Grant CA44349 from the National Cancer Institute (to P. C. H.).

  • ↵2 To whom requests for reprints should be addressed. Phone: (650) 723-2425; Fax: (650) 725-1848; E-mail: jmf@leland.stanford.edu.

  • Received October 24, 1997.
  • Accepted January 5, 1998.
  • ©1998 American Association for Cancer Research.
PreviousNext
Back to top
February 1998
Volume 58, Issue 4
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human Fibroblasts Expressing the Human Papillomavirus E6 Gene Are Deficient in Global Genomic Nucleotide Excision Repair and Sensitive to Ultraviolet Irradiation
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Human Fibroblasts Expressing the Human Papillomavirus E6 Gene Are Deficient in Global Genomic Nucleotide Excision Repair and Sensitive to Ultraviolet Irradiation
James M. Ford, Elinor L. Baron and Philip C. Hanawalt
Cancer Res February 15 1998 (58) (4) 599-603;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Human Fibroblasts Expressing the Human Papillomavirus E6 Gene Are Deficient in Global Genomic Nucleotide Excision Repair and Sensitive to Ultraviolet Irradiation
James M. Ford, Elinor L. Baron and Philip C. Hanawalt
Cancer Res February 15 1998 (58) (4) 599-603;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Advances in Brief

  • NIMA-Related Protein Kinase 1 Is Involved Early in the Ionizing Radiation-Induced DNA Damage Response
  • 2-Arachidonoylglycerol
  • Conditional Expression of K-ras in an Epithelial Compartment that Includes the Stem Cells Is Sufficient to Promote Squamous Cell Carcinogenesis
Show more Advances in Brief

Articles

  • Membership of Awards Assembly
  • Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans
  • The Prizes
Show more Articles
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement