Abstract
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a multifunctional cytokine and growth factor that has important roles in both pathological and physiological angiogenesis. VPF/VEGF induces vascular hyperpermeability, cell division, and other activities by interacting with two specific receptor tyrosine kinases, KDR/Flk-1 and Flt-1, that are selectively expressed on vascular endothelium. The signaling cascade that follows VPF/VEGF interaction with cultured endothelium is only partially understood but is known to result in increased intracellular calcium, activation of protein kinase C, and tyrosine phosphorylations of both receptors, phospholipase C-γ (PLC-γ) and phosphatidylinositol 3′-kinase. For many reasons, signaling events elicited in cultured endothelium may not mimic mediator effects on intact normal or tumor-induced microvessels in vivo. Therefore, we developed a system that would allow measurement of VPF/VEGF-induced signaling on intact microvessels. We used mouse mesentery, a tissue whose numerous microvessels are highly responsive to VPF/VEGF and that we found to express Flk-1 and Flt-1 selectively. At intervals after injecting VPF/VEGF i.p., mesenteries were harvested, extracted, and immunoprecipitated. Immunoblots confirmed that VPF/VEGF induced tyrosine phosphorylation of several proteins in mesenteric microvessels as in cultured endothelium: Flk-1; PLC-γ; and mitogen-activated protein kinase. Similar phosphorylations were observed when mesentery was exposed to VPF/VEGF in vitro, or when mesenteries were harvested from mice bearing the mouse ovarian tumor ascites tumor, which itself secretes abundant VPF/VEGF. Other experiments further elucidated the VPF/VEGF signaling pathway, demonstrating phosphorylation of both PYK2 and focal adhesion kinase, activation of c-jun-NH2-kinase with phosphorylation of c-Jun, and an association between Flk-1 and PLC-γ. In addition, we demonstrated translocation of mitogen-activated protein kinase to the cell nucleus in cultured endothelium. Taken together, these experiments describe a new model system with the potential for investigating signaling events in response to diverse mediators on intact microvessels in vivo and have further elucidated the VPF/VEGF signaling cascade.
Footnotes
-
↵1 This work was supported by NIH Grants CA-50453 and HL-54465 and under terms of a contract from the National Foundation for Cancer Research.
-
↵2 To whom requests for reprints should be addressed, at Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215.
- Received May 28, 1997.
- Accepted January 13, 1998.
- ©1998 American Association for Cancer Research.