Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Carcinogenesis

Sulindac Sulfone Inhibits K-ras-dependent Cyclooxygenase-2 Expression in Human Colon Cancer Cells

Michele T. Taylor, Kathryn R. Lawson, Natalia A. Ignatenko, Sarah E. Marek, David E. Stringer, Beth A. Skovan and Eugene W. Gerner
Michele T. Taylor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathryn R. Lawson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalia A. Ignatenko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah E. Marek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David E. Stringer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beth A. Skovan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eugene W. Gerner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published December 2000
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Both the sulfide and sulfone metabolites of sulindac, a nonsteroidal anti-inflammatory drug, display anticarcinogenic effects in experimental models. Sulindac sulfide inhibits cyclooxygenase (COX) enzyme activities and has been reported to suppress ras-dependent signaling. However, the mechanisms by which sulindac sulfone suppresses cancer growth are not as defined. We studied the effects of these sulindac metabolites in human colon cancer-derived Caco-2 cells that have been transfected with an activated K-ras oncogene. Stable transfected clones expressed high levels of COX-2 mRNA and protein, compared with parental cells. K-ras-transfected cells formed tumors more quickly when injected into severe combined immunodeficiency disease mice than parental cells, and this tumorigenesis was suppressed by treatment with sulindac. Sulindac sulfone inhibited COX-2 protein expression, which resulted in a decrease in prostaglandin synthase E2 production. Sulindac sulfide had little effect on COX-2 in this model, but did suppress prostaglandin synthase E2 production, presumably by inhibiting COX enzyme activity. These data indicate that the sulfide and sulfone derivatives of sulindac exert COX-dependent effects by distinct mechanisms.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • ↵1 Supported in part by USPHS Grants CA-23074, CA-72008, and a contract (9629) from the Arizona Disease Control Research Commission.

  • ↵2 To whom requests for reprints should be addressed, at Arizona Cancer Center, 1515 N. Campbell Avenue, P.O. Box 245024, Tucson, AZ 85724.

  • Received April 18, 2000.
  • Accepted October 15, 2000.
  • ©2000 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
December 2000
Volume 60, Issue 23
  • Table of Contents

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sulindac Sulfone Inhibits K-ras-dependent Cyclooxygenase-2 Expression in Human Colon Cancer Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Sulindac Sulfone Inhibits K-ras-dependent Cyclooxygenase-2 Expression in Human Colon Cancer Cells
Michele T. Taylor, Kathryn R. Lawson, Natalia A. Ignatenko, Sarah E. Marek, David E. Stringer, Beth A. Skovan and Eugene W. Gerner
Cancer Res December 1 2000 (60) (23) 6607-6610;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Sulindac Sulfone Inhibits K-ras-dependent Cyclooxygenase-2 Expression in Human Colon Cancer Cells
Michele T. Taylor, Kathryn R. Lawson, Natalia A. Ignatenko, Sarah E. Marek, David E. Stringer, Beth A. Skovan and Eugene W. Gerner
Cancer Res December 1 2000 (60) (23) 6607-6610;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Abstract LB-089: Defining windows of susceptibility for low-dose exposure to endocrine disruptors in rat mammary development by microRNA profiling
  • Abstract LB-091: Characterization of molecular changes occurring during long-term treatment of human bronchial epithelial cells with cigarette smoke total particulate matter
  • Abstract LB-092: Programmed death-ligand 1 is overexpressed in bronchial preneoplastic lesions: can it be a risk indicator
Show more Carcinogenesis
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement