Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Molecular Biology, Pathobiology, and Genetics

The Human Ribonucleotide Reductase Subunit hRRM2 Complements p53R2 in Response to UV-Induced DNA Repair in Cells with Mutant p53

Bingsen Zhou, Xiyong Liu, Xueli Mo, Lijun Xue, Dana Darwish, Weihua Qiu, Jennifer Shih, Edward B. Hwu, Frank Luh and Yun Yen
Bingsen Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiyong Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xueli Mo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lijun Xue
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dana Darwish
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weihua Qiu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer Shih
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward B. Hwu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank Luh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yun Yen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 2003
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Ribonucleotide reductase (RR) is responsible for the de novo conversion of the ribonucleoside diphosphates to deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. RR consists of two subunits, hRRM1 and hRRM2. p53R2 is a new RR family member. Because the majority of human tumors possess mutant p53, it is important to know the molecular mechanism by which mutant p53 regulates RR and to what extent. In this study, we investigated the expression and function of p53R2 and hRRM2 after UV treatment in human prostate cancer PC3 cells, which possess mutant p53 with a truncated COOH-terminal, and in human oropharyngeal cancer KB cells, which possess wild-type p53. p53R2 (analyzed by Western blot and standardized relative to Coomassie Blue-stained band) was down-regulated in PC3 cells and up-regulated in KB cells after UV exposure. In contrast, hRRM2 was up-regulated by UV in both PC3 cells and KB cells. hRRM2 and p53R2 mRNA levels were assessed by Northern blot, and the results paralleled that of the Western blot. Coimmunoprecipitation assays using agarose-conjugated goat antihuman RRM1 antibody confirmed that the p53R2 binding to hRRM1 decreased in PC3 cells but increased in KB cells after UV treatment. hRRM2 binding to hRRM1 increased in both cell lines under the same conditions. These results suggest that PC3 cells are deficient in both transcription of p53R2 and binding to hRRM1 in response to UV irradiation. Confocal microscopy further confirmed that these findings were not due to translocation of hRRM2 and p53R2 from the cytoplasm to the nucleus. RR activity was measured following UV treatment and shown to increase in PC3 cells. It was unchanged in proportional of KB cells. The RR activity is consistent with the expression of hRRM2 seen in the Western blots. Thus, we hypothesize that hRRM2 complements p53R2 to form RR holoenzyme and maintain RR activity in PC3 cells after UV treatment. To further confirm this hypothesis, we examined the effect of RRM2 inhibitors on cells exposed to UV. In PC3 cells, hydroxyurea inhibited hRRM2 and resulted in increased sensitivity to UV irradiation. We also examined the effect of UV treatment on the colony-forming ability of cells transfected with hRRM2 as well as p53R2 sense or antisense expression vectors. Expression of antisense hRRM2 in PC3 cells led to decreased hRRM2 expression and resulted in greater sensitivity to UV than observed in wild-type PC3 cells. Taken together, we conclude that UV-induced activation of p53R2 transcription and binding of p53R2 to hRRM1 to form RR holoenzyme are impaired in the p53-mutant cell line PC3.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • ↵1 Supported by National Cancer Institute Grant CA 72767.

  • ↵2 To whom requests for reprints should be addressed, at Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-3000. Phone: (626) 359-8111, ext. 62307; Fax: (626) 301-8233; E-mail: yyen{at}coh.org

  • Received November 8, 2002.
  • Revision received July 14, 2003.
  • Accepted July 28, 2003.
  • ©2003 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 63 (20)
October 2003
Volume 63, Issue 20
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Human Ribonucleotide Reductase Subunit hRRM2 Complements p53R2 in Response to UV-Induced DNA Repair in Cells with Mutant p53
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Human Ribonucleotide Reductase Subunit hRRM2 Complements p53R2 in Response to UV-Induced DNA Repair in Cells with Mutant p53
Bingsen Zhou, Xiyong Liu, Xueli Mo, Lijun Xue, Dana Darwish, Weihua Qiu, Jennifer Shih, Edward B. Hwu, Frank Luh and Yun Yen
Cancer Res October 15 2003 (63) (20) 6583-6594;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The Human Ribonucleotide Reductase Subunit hRRM2 Complements p53R2 in Response to UV-Induced DNA Repair in Cells with Mutant p53
Bingsen Zhou, Xiyong Liu, Xueli Mo, Lijun Xue, Dana Darwish, Weihua Qiu, Jennifer Shih, Edward B. Hwu, Frank Luh and Yun Yen
Cancer Res October 15 2003 (63) (20) 6583-6594;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • References
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • HSF1-Mediated Aneuploidy in p53-Defective Cells
  • Mechanisms of Invasive Urothelial Tumorigenesis
  • Alternate mRNA 3′ Processing Characterizes Distinct Tumors
Show more Molecular Biology, Pathobiology, and Genetics
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement