Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Molecular Biology, Pathobiology, and Genetics

Evolutionary Dynamics of Mutator Phenotypes in Cancer

Implications for Chemotherapy

Natalia L. Komarova and Dominik Wodarz
Natalia L. Komarova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominik Wodarz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 2003
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Genetic instability is a central characteristic of cancers. However, the selective forces responsible for the emergence of genetic instability are not clear. We use mathematical models to determine the conditions under which selection favors instability, and when stable cells are advantageous. We take into account the processes of DNA damage, repair, cell cycle arrest, mutation, and death. We find that the rate of DNA damage can play a major role in this context. In particular, an increase in the rate of DNA damage can reverse the relative fitness of stable and unstable cells. In terms of cancer progression, we find the following results. If cells have intact apoptotic responses, stable cells prevail if the DNA hit rate is low. A high DNA hit rate can result in the selection of genetically unstable cells. This has implications for the induction of tumors by carcinogens. On the other hand, if cells are characterized by impaired apoptosis, we observe the opposite. Genetic instability is selected for if the DNA hit rate is low. A high DNA hit rate can select against instability and result in the persistence of stable cells. We propose that chemotherapy can be used to reverse the relative fitness of stable and unstable cells, such that unstable cells are the inferior competitors. This could result in the competitive exclusion of progressing cancer cells.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • ↵1 Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org).

  • ↵2 To whom requests for reprints should be addressed, at Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, MP-665, Seattle, WA 98109-1024. Phone: (206) 667-4157; Fax: (206) 667-7004; E-mail: wodarz{at}fhcrc.org

  • Received March 5, 2003.
  • Revision received July 21, 2003.
  • Accepted July 22, 2003.
  • ©2003 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 63 (20)
October 2003
Volume 63, Issue 20
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evolutionary Dynamics of Mutator Phenotypes in Cancer
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evolutionary Dynamics of Mutator Phenotypes in Cancer
Natalia L. Komarova and Dominik Wodarz
Cancer Res October 15 2003 (63) (20) 6635-6642;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evolutionary Dynamics of Mutator Phenotypes in Cancer
Natalia L. Komarova and Dominik Wodarz
Cancer Res October 15 2003 (63) (20) 6635-6642;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • HSF1-Mediated Aneuploidy in p53-Defective Cells
  • Mechanisms of Invasive Urothelial Tumorigenesis
  • Alternate mRNA 3′ Processing Characterizes Distinct Tumors
Show more Molecular Biology, Pathobiology, and Genetics
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement