Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cell and Tumor Biology

Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis

Ajay P. Singh, Nicolas Moniaux, Subhash C. Chauhan, Jane L. Meza and Surinder K. Batra
Ajay P. Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolas Moniaux
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Subhash C. Chauhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jane L. Meza
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Surinder K. Batra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.CAN-03-2636 Published January 2004
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The MUC4 mucin is a high molecular weight membrane-bound glycoprotein. It is aberrantly expressed in pancreatic tumors and tumor cell lines with no detectable expression in the normal pancreas. A progressive increase of MUC4 expression has also been observed in pancreatic intraepithelial neoplasia, suggesting its association with disease development. Here, we investigated the consequences of silencing MUC4 expression in an aggressive and highly metastatic pancreatic tumor cell line CD18/HPAF that expresses high levels of MUC4. The expression of MUC4 was down-regulated by the stable integration of a plasmid-construct expressing antisense-MUC4 RNA. A decrease in MUC4 expression, confirmed by Western blot and immunofluorescence analyses, resulted in diminished growth and clonogenic ability of antisense-MUC4-transfected (EIAS19) cells compared with parental, empty vector (ZEO) and sense transfected (ES6) control cells. In addition, EIAS19 cells displayed a significant decrease in tumor growth and metastatic properties when transplanted orthotopically into the immunodeficient mice. In vitro biological assays for motility, adhesion, and aggregation demonstrated a 3-fold decrease in motility of EIAS19 cells compared with control cells, whereas these cells adhered more and showed an increase in cellular aggregation. Interestingly, MUC4 down-regulation also correlated with the reduced expression of its putative interacting partner, HER2/neu, in antisense-MUC4-transfected cells. In conclusion, the present work demonstrates, for the first time, a direct association of the MUC4 mucin with the metastatic pancreatic cancer phenotype and provides experimental evidence for a functional role of MUC4 in altered growth and behavioral properties of the tumor cell.

Footnotes

  • Grant support: R01 Grant CA78590 from the NIH.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Requests for reprints: Surinder K. Batra, Department of Biochemistry and Molecular Biology and Eppley Institute, University of Nebraska Medical Center, 984525 Nebraska Medical Center, Omaha, Nebraska 68198-4525. Phone: (402) 559-5455; Fax: (402) 559-6650; E-mail: sbatra{at}unmc.edu

  • Received August 22, 2003.
  • Revision received October 3, 2003.
  • Accepted November 5, 2003.
  • ©2004 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 64 (2)
January 2004
Volume 64, Issue 2
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis
Ajay P. Singh, Nicolas Moniaux, Subhash C. Chauhan, Jane L. Meza and Surinder K. Batra
Cancer Res January 15 2004 (64) (2) 622-630; DOI: 10.1158/0008-5472.CAN-03-2636

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis
Ajay P. Singh, Nicolas Moniaux, Subhash C. Chauhan, Jane L. Meza and Surinder K. Batra
Cancer Res January 15 2004 (64) (2) 622-630; DOI: 10.1158/0008-5472.CAN-03-2636
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Bortezomib Inhibits PKR-Like Endoplasmic Reticulum (ER) Kinase and Induces Apoptosis via ER Stress in Human Pancreatic Cancer Cells
  • The Shed Ectodomain of Nr-CAM Stimulates Cell Proliferation and Motility, and Confers Cell Transformation
  • ABCC Drug Efflux Pumps and Organic Anion Uptake Transporters in Human Gliomas and the Blood-Tumor Barrier
Show more Cell and Tumor Biology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement