Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental Therapeutics, Molecular Targets, and Chemical Biology

3-Phosphoinositide-Dependent Protein Kinase-1/Akt Signaling Represents a Major Cyclooxygenase-2-Independent Target for Celecoxib in Prostate Cancer Cells

Samuel K. Kulp, Ya-Ting Yang, Chin-Chun Hung, Kuen-Feng Chen, Ju-Ping Lai, Ping-Hui Tseng, Joseph W. Fowble, Patrick J. Ward and Ching-Shih Chen
Samuel K. Kulp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ya-Ting Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chin-Chun Hung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kuen-Feng Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ju-Ping Lai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ping-Hui Tseng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph W. Fowble
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick J. Ward
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ching-Shih Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.CAN-03-2396 Published February 2004
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Regarding the involvement of cyclooxygenase-2 (COX-2)-independent pathways in celecoxib-mediated antineoplastic effects, the following two issues remain outstanding: identity of the non-COX-2 targets and relative contributions of COX-2-dependent versus -independent mechanisms. We use a close celecoxib analog deficient in COX-2-inhibitory activity, DMC {4-[5-(2,5-dimethylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide}, to examine the premise that Akt signaling represents a major non-COX-2 target. Celecoxib and DMC block Akt activation in PC-3 cells through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1) with IC50 of 48 and 38 μm, respectively. The consequent effect on Akt activation is more pronounced (IC50 values of 28 and 20 μm, respectively), which might be attributed to the concomitant dephosphorylation by protein phosphatase 2A. In serum-supplemented medium, celecoxib and DMC cause G1 arrest, and at higher concentrations, they induce apoptosis with relative potency comparable with that in blocking Akt activation. Moreover, the effect of daily oral celecoxib and DMC at 100 and 200 mg/kg on established PC-3 xenograft tumors is assessed. Celecoxib at both doses and DMC at 100 mg/kg had marginal impacts. However, a correlation exists between the in vitro potency of DMC and its ability at 200 mg/kg to inhibit xenograft tumor growth through the inhibition of Akt activation. Analysis of the tumor samples indicates that a differential reduction in the phospho-Akt/Akt ratio was noted in celecoxib- and DMC-treated groups vis-à-vis the control group. Together, these data underscore the role of 3-phosphoinositide-dependent protein kinase-1/Akt signaling in celecoxib-mediated in vitro antiproliferative effects in prostate cancer cells.

Footnotes

  • Grant support: NIH Grant CA-94829 and Department of Defense Prostate Cancer Research Program DAMD17-02-1-0117.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Requests for reprints: Ching-Shih Chen, College of Pharmacy, The Ohio State University, 336 L. M. Parks Hall, Columbus, Ohio 43210. Phone: (614) 688-4008; Fax: (614) 688-8556; E-mail: chen.844{at}osu.edu

  • Received August 3, 2003.
  • Revision received October 31, 2003.
  • Accepted December 12, 2003.
  • ©2004 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 64 (4)
February 2004
Volume 64, Issue 4
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
3-Phosphoinositide-Dependent Protein Kinase-1/Akt Signaling Represents a Major Cyclooxygenase-2-Independent Target for Celecoxib in Prostate Cancer Cells
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
3-Phosphoinositide-Dependent Protein Kinase-1/Akt Signaling Represents a Major Cyclooxygenase-2-Independent Target for Celecoxib in Prostate Cancer Cells
Samuel K. Kulp, Ya-Ting Yang, Chin-Chun Hung, Kuen-Feng Chen, Ju-Ping Lai, Ping-Hui Tseng, Joseph W. Fowble, Patrick J. Ward and Ching-Shih Chen
Cancer Res February 15 2004 (64) (4) 1444-1451; DOI: 10.1158/0008-5472.CAN-03-2396

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
3-Phosphoinositide-Dependent Protein Kinase-1/Akt Signaling Represents a Major Cyclooxygenase-2-Independent Target for Celecoxib in Prostate Cancer Cells
Samuel K. Kulp, Ya-Ting Yang, Chin-Chun Hung, Kuen-Feng Chen, Ju-Ping Lai, Ping-Hui Tseng, Joseph W. Fowble, Patrick J. Ward and Ching-Shih Chen
Cancer Res February 15 2004 (64) (4) 1444-1451; DOI: 10.1158/0008-5472.CAN-03-2396
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Trastuzumab and Pertuzumab: Enhanced Antitumor Activity
  • Imatinib Sensitizes Bcr-Abl+ Cells to Cisplatin
  • Loss of S1P Lyase Upregulates Bcl-2
Show more Experimental Therapeutics, Molecular Targets, and Chemical Biology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement