Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Molecular Biology, Pathobiology, and Genetics

Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice

Benedicte Trouiller, Ramune Reliene, Aya Westbrook, Parrisa Solaimani and Robert H. Schiestl
Benedicte Trouiller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ramune Reliene
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aya Westbrook
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Parrisa Solaimani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert H. Schiestl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.CAN-09-2496 Published November 2009
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Titanium dioxide (TiO2) nanoparticles are manufactured worldwide in large quantities for use in a wide range of applications including pigment and cosmetic manufacturing. Although TiO2 is chemically inert, TiO2 nanoparticles can cause negative health effects, such as respiratory tract cancer in rats. However, the mechanisms involved in TiO2-induced genotoxicity and carcinogenicity have not been clearly defined and are poorly studied in vivo. The present study investigates TiO2 nanoparticles–induced genotoxicity, oxidative DNA damage, and inflammation in a mice model. We treated wild-type mice with TiO2 nanoparticles in drinking water and determined the extent of DNA damage using the comet assay, the micronuclei assay, and the γ-H2AX immunostaining assay and by measuring 8-hydroxy-2′-deoxyguanosine levels and, as a genetic instability endpoint, DNA deletions. We also determined mRNA levels of inflammatory cytokines in the peripheral blood. Our results show that TiO2 nanoparticles induced 8-hydroxy-2′-deoxyguanosine, γ-H2AX foci, micronuclei, and DNA deletions. The formation of γ-H2AX foci, indicative of DNA double-strand breaks, was the most sensitive parameter. Inflammation was also present as characterized by a moderate inflammatory response. Together, these results describe the first comprehensive study of TiO2 nanoparticles–induced genotoxicity in vivo in mice possibly caused by a secondary genotoxic mechanism associated with inflammation and/or oxidative stress. Given the growing use of TiO2 nanoparticles, these findings raise concern about potential health hazards associated with TiO2 nanoparticles exposure. [Cancer Res 2009;69(22):8784–9]

Keywords
  • TiO2
  • nanoparticles
  • mice
  • genetic instability
  • DNA damage
  • inflammation

Footnotes

  • Received July 20, 2009.
  • Revision received August 22, 2009.
  • Accepted September 10, 2009.
  • ©2009 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 69 (22)
November 2009
Volume 69, Issue 22
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice
Benedicte Trouiller, Ramune Reliene, Aya Westbrook, Parrisa Solaimani and Robert H. Schiestl
Cancer Res November 15 2009 (69) (22) 8784-8789; DOI: 10.1158/0008-5472.CAN-09-2496

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice
Benedicte Trouiller, Ramune Reliene, Aya Westbrook, Parrisa Solaimani and Robert H. Schiestl
Cancer Res November 15 2009 (69) (22) 8784-8789; DOI: 10.1158/0008-5472.CAN-09-2496
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Consequences of Combined Fancd2 and Mlh1 Defects
  • Srcasm Inhibits Fyn-Induced Cutaneous Carcinogenesis
  • TRADD Expression during Prostate Cancer Progression
Show more Molecular Biology, Pathobiology, and Genetics
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement